IT-kurs
Du har valgt: IT kompetanse
Nullstill
Filter
Ferdig

-

38 treff i IT kompetanse
 

Oslo Trondheim 2 dager 16 900 kr
27 Jan
17 Feb
24 Mar
Modern Application Architecture [+]
Modern Application Architecture [-]
Les mer
Virtuelt klasserom 3 dager 23 650 kr
Due to the Coronavirus the course instructor is not able to come to Oslo. As an alternative we offer this course as a Blended Virtual Course. [+]
Blended Virtual Course The course is a hybrid of virtual training and self-study which will be a mixture of teaching using Microsoft Teams for short bursts at the beginning of the day, then setting work for the rest of the day and then coming back at the end of the day for another on-line session for any questions before setting homework in the form of practice exams for the evening. You do not have to install Microsoft Teams , you will receive a link and can access the course using the web browser.  Remote proctored examTake your exam from any location. Read about iSQI remote proctored exam here Requirements for the exam: The exam will be using Google Chrome and there is a plug-in that needs to be installed  You will need a laptop/PC with a camera and a microphone  A current ID with a picture  This 3-day course is aimed at anyone wishing to attain the ISTQB Advanced Test Automation Engineer qualification. This qualification builds upon the Foundation syllabus and provides essential skills for all those involved in test automation and who want to develop further their expertise in one or more specific areas. Bouvet sine kursdeltakeres testresultater vs ISTQB gjennomsnitt A Test Automation Engineer is one who has broad knowledge of testing in general, and an in-depth understanding in the special area of test automation. An in-depth understanding is defined as having sufficient knowledge of test automation theory and practice to be able to influence the direction that an organization and/or project takes when designing, developing and maintaining test automation solutions for functional tests. The modules offered at the Advanced Level Specialist cover a wide range of testing topics.   The course is highly practical addressing the following areas: Introduction and objectives for Test Automation This section provides an introduction to test automation explaining the objectives, advantages, disadvantages and limitations of test automation as well as technical success factors of a test automation project. Preparing for Test Automation Understanding the type of system is vital for determining the most appropriate automation solution and also how we can design systems and testing for more effective automation. This section also looks at how we can evaluate for the most appropriate tools. The generic Test Automation architecture A test automation engineer has the role of designing, developing, implementing, and maintaining test automation solutions. As each solution is developed, similar tasks need to be done, similar questions need to be answered, and similar issues need to be addressed and prioritized. These reoccurring concepts, steps, and approaches in automating testing become the basis of the generic test automation architecture, and this will be discussed in detail during this section Deployment risks and contingencies This section looks at the various risks associated with the deployment of test tools and how to avoid test automation failure. Test Automation reporting and metrics Providing information to stakeholders for them to make informed decisions about the quality of the software is a vital part of testing and this section looks at the various metrics that can be used to monitor test automation and what information should be supplied to the stakeholder and how it should be presented. Transitioning manual testing to an automated environment This section looks at the various criteria to apply to determine the suitability for automation and understanding the factors for transitioning from manual to automation testing Verifying the Test Automation solution To have justified confidence in the information we supply to the stakeholders regarding test automation we must have justified confidence in the test environment and test automation solution supporting the information Continuous improvement This section looks ahead and how we can improve the automation solution making it more effective and efficient The Exam The ISTQB Advanced Test Automation Engineer exam is a 1 hour 30 minute, 40 question multiple-choice exam totaling 75 points. The pass mark is 65% (49 out of 75). It is a pre-requisite that attendees hold the ISTQB Foundation Level certificate. [-]
Les mer
Virtuelt klasserom 2 dager 15 000 kr
This course will provide foundational level knowledge of cloud services and how those services are provided with Microsoft Azure. The course can be taken as an optional f... [+]
The course will cover general cloud computing concepts as well as general cloud computing models and services such as Public, Private and Hybrid cloud and Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS) and Software-as-a-Service (SaaS). It will also cover some core Azure services and solutions, as well as key Azure pillar services concerning security, privacy, compliance and trust. It will finally cover pricing and support services available.   Agenda Module 1: Cloud Concepts -Learning Objectives-Why Cloud Services?-Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)-Public, Private, and Hybrid cloud models Module 2: Core Azure Services -Core Azure architectural components-Core Azure Services and Products-Azure Solutions-Azure management tools Module 3: Security, Privacy, Compliance and Trust -Securing network connectivity in Azure-Core Azure Identity services-Security tools and features-Azure governance methodologies-Monitoring and Reporting in Azure-Privacy, Compliance and Data Protection standards in Azure Module 4: Azure Pricing and Support -Azure subscriptions-Planning and managing costs-Support options available with Azure-Service lifecycle in Azure [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
In this course, the students will implement various data platform technologies into solutions that are in line with business and technical requirements including on-premi... [+]
The students will also explore how to implement data security including authentication, authorization, data policies and standards. They will also define and implement data solution monitoring for both the data storage and data processing activities. Finally, they will manage and troubleshoot Azure data solutions which includes the optimization and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Azure for the Data Engineer -Explain the evolving world of data-Survey the services in the Azure Data Platform-Identify the tasks that are performed by a Data Engineer-Describe the use cases for the cloud in a Case Study Module 2: Working with Data Storage. -Choose a data storage approach in Azure-Create an Azure Storage Account-Explain Azure Data Lake storage-Upload data into Azure Data Lake Module 3: Enabling Team Based Data Science with Azure Databricks. -Explain Azure Databricks and Machine Learning Platforms-Describe the Team Data Science Process-Provision Azure Databricks and workspaces-Perform data preparation tasks Module 4: Building Globally Distributed Databases with Cosmos DB. -Create an Azure Cosmos DB database built to scale-Insert and query data in your Azure Cosmos DB database-Provision a .NET Core app for Cosmos DB in Visual Studio Code-Distribute your data globally with Azure Cosmos DB Module 5: Working with Relational Data Stores in the Cloud. -SQL Database and SQL Data Warehouse-Provision an Azure SQL database to store data-Provision and load data into Azure SQL Data Warehouse Module 6: Performing Real-Time Analytics with Stream Analytics. Module 7: Orchestrating Data Movement with Azure Data Factory. -Explain how Azure Data Factory works-Create Linked Services and datasets-Create pipelines and activities-Azure Data Factory pipeline execution and triggers Module 8: Securing Azure Data Platforms. -Configuring Network Security-Configuring Authentication-Configuring Authorization-Auditing Security Module 9: Monitoring and Troubleshooting Data Storage and Processing. -Data Engineering troubleshooting approach-Azure Monitoring Capabilities-Troubleshoot common data issues-Troubleshoot common data processing issues Module 10: Integrating and Optimizing Data Platforms. -Integrating data platforms-Optimizing data stores-Optimize streaming data-Manage disaster recovery [-]
Les mer
Oslo 5 dager 30 000 kr
20 Jan
20 Jan
24 Feb
AI-102: Designing and Implementing a Microsoft Azure AI Solution [+]
AI-102: Designing and Implementing a Microsoft Azure AI Solution [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Virtuelt klasserom 4 dager 24 000 kr
This course provides students with the skills and knowledge required to successfully create and maintain the cloud and edge portions of an Azure IoT solution. The course ... [+]
  An Azure IoT Developer is responsible for implementing and then maintaining the cloud and edge portions of an Azure IoT solution. In addition to configuring and maintaining devices by using Azure IoT services and other Microsoft tools, the IoT Developer also sets up the physical devices and is responsible for maintaining the devices throughout the life cycle. The IoT Developer implements designs for IoT solutions, including device topology, connectivity, debugging and security. For Edge device scenarios, the IoT Developer also deploys compute/containers and configures device networking, which could include various edge gateway implementations. The IoT Developer implements designs for solutions to manage data pipelines, including monitoring and data transformation as it relates to IoT. The IoT Developer works with data engineers and other stakeholders to ensure successful business integration. IoT Developers should have a good understanding of Azure services, including data storage options, data analysis, data processing, and the Azure IoT PaaS versus SaaS options. After completing this course, students will be able to: Create, configure, and manage an Azure IoT hub. Provision devices by using IoT Hub and DPS, including provisioning at scale. Establish secure 2-way communication between devices and IoT Hub. Implement message processing by using IoT Hub routing and Azure Stream Analytics. Configure the connection to Time Series Insights and support business integration requirements. Implement IoT Edge scenarios using marketplace modules and various edge gateway patterns. Implement IoT Edge scenarios that require developing and deploying custom modules and containers. Implement device management using device twins and direct methods. Implement solution monitoring, logging, and diagnostics testing. Recognize and address security concerns and implement Azure Security Center for IoT. Build an IoT Solution by using Azure IoT Central and recongize SaaS opportunities for IoT. Course prerequisites IoT Developers should have basic programming skills in at least one Azure-supported language, including C#, Node.js, C, Python, or Java. Software development experience is a prerequisite for this course, but no specific software language is required, and the experience does not need to be at a professional level. Data Processing Experience: General understanding of data storage and data processing is a recommended but not required.  Cloud Solution Awareness: Students should have a basic understanding of PaaS, SaaS, and IaaS implementations. Microsoft Azure Fundamentals (M-AZ-900T00/M-AZ900), or equivalent skills, is recommended.  This course helps to prepare for exam AZ-220.   Agenda Module 1: Introduction to IoT and Azure IoT Services -Business Opportunities for IoT-Introduction to IoT Solution Architecture-IoT Hardware and Cloud Services Module 2: Devices and Device Communication -IoT Hub and Devices-IoT Developer Tools-Device Configuration and Communication Module 3: Device Provisioning at Scale -Device Provisioning Service Terms and Concepts-Configure and Manage the Device Provisioning Service-Device Provisioning Tasks Module 4: Message Processing and Analytics -Messages and Message Processing-Data Storage Options-Azure Stream Analytics Module 5: Insights and Business Integration -Business Integration for IoT Solutions-Data Visualization with Time Series Insights-Data Visualization with Power BI Module 6: Azure IoT Edge Deployment Process -Introduction to Azure IoT Edge-Edge Deployment Process-Edge Gateway Devices Module 7: Azure IoT Edge Modules and Containers -Develop Custom Edge Modules-Offline and Local Storage Module 8: Device Management -Introduction to IoT Device Management-Manage IoT and IoT Edge Devices-Device Management at Scale Module 9: Solution Testing, Diagnostics, and Logging -Monitoring and Logging-Troubleshooting Module 10: Azure Security Center and IoT Security Considerations -Security Fundamentals for IoT Solutions-Introduction to Azure Security Center for IoT-Enhance Protection with Azure Security Center for IoT Agents Module 11: Build an IoT Solution with IoT Central -Introduction to IoT Central-Create and Manage Device Templates-Manage Devices in Azure IoT Central [-]
Les mer
Bedriftsintern 1 dag 7 500 kr
Data science og maskinlæring er blitt en viktig drivkraft bak mange forretnings beslutninger. Men fortsatt er mange usikre på hva begrepene innebærer og hvilke muligheter... [+]
Dette kurset tilbys som bedriftsinternt kurs   Maskinlæring handler om sette datamaskiner i stand til å lære fra og utvikle atferd basert på data. Det vil si at en datamaskin kan løse en oppgave den ikke er eksplisitt programmert for å håndtere. I stedet er den i stand til å automatisk lære gjenkjenning av komplekse mønstre i data og gjøre beslutninger basert på dette disse. Maskinlæring gir store muligheter, men mange bedrifter har problemer med å ta teknologien i bruk. Nøyaktig hvilke oppgaver kan maskinlæring utføre, og hvordan kommer man i gang? Dette kurset gir oversikt over mulighetene som ligger i maskinlæring, og hvordan i tillegg til kunnskap om hvordan teknologien kan løse oppgaver og skape resultater i praksis. Hva er maskinlæring, datavitenskap og kunstig intelligens og hvordan det er relatert til statistikk og dataanalyse? Hvordan å utvinne kunnskap fra dataene dine? Hva betyr Big data og hvordan analyseres det? Hvor og hvordan skal du bruke maskinlæring til dine daglige forretningsproblemer? Hvordan bruke datamønstre til å ta avgjørelser og spådommer med eksempler fra den virkelige verden? Hvilke typer forretningsproblemer kan en maskinen lære å håndtere Muligheter som maskinlæring gir din bedrift Hva er de teoretiske aspekter på metoder innen maskinlæring? Hvilke ML-metoder som er relevante for ulike problemstillinger innen dataanalyse? Hvordan evaluere styrker og svakheter mellom disse algoritmene og velge den beste? Anvendt data science og konkrete kunde eksempler i praksis   Målsetning Kurset gir kunnskap om hvordan maskinlæring kan løse et bestemt problem og hvilke metoder som egner seg i en gitt situasjon. Du blir i stand til å kan skaffe deg innsikt i data, og vil kunne identifisere egenskapene som representerer dem best. Du kjenner de viktigste maskinlæringsalgoritmene og hvilke metoder som evaluerer ytelsen deres best. Dette gir grunnlag for kontinuerlig forbedring av løsninger basert på maskinlæring.   [-]
Les mer
4 dager 4 865 kr
På forespørsel
Modul Operate omhandler nettverk og relaterte kommunikasjonstjenester innen en IT-infrastruktur, samt vedlikehold og brukerproblemstillinger i forhold til tjenestetilbude... [+]
Kursinnhold• Hardwarekomponenter og arkitektur• Operativsystemer  • Kommunikasjon og nettverk• Nettverkstjenester• Trådløs og mobil databehandling• Nettverksadministrasjon• Service og support   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.   InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.   MålsetningModul Operate omhandler nettverk og relaterte kommunikasjonstjenester innen en IT- infrastruktur, samt vedlikehold og brukerproblemstillinger i forhold til tjenestetilbudet. Modulen krever at kandidaten skal kjenne til hardware komponenter, dataarkitekturer og forskjellige operativsystemer. Kandidaten skal også skille mellom ulike nivåer av kommunikasjonsprotokoller, og deres bruk i både kablede og trådløse nettverksteknologier. Dessuten skal kandidaten forstå Simple Network Management Protocol (SNMP), e-post og webtjenester, og de tilhørende sikkerhetstrusler og mottiltak. Kandidaten skal forstå betydningen av en klient-orientert tilnærming til IT-støtte, og kunne benytte noen av de grunnleggende prinsipper for IT-support.. [-]
Les mer
5 000 kr
5G Security [+]
5G Security [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course teaches Solutions Architects how to translate business requirements into secure, scalable, and reliable solutions. Lessons include virtualization, automation,... [+]
Agenda Module 1: Implement VMs for Windows and Linux -Select Virtual Machine Size-Configure High Availability-Implement Azure Dedicated Hosts-Deploy and Configure Scale Sets-Configure Azure Disk Encryption Module 2: Automate Deployment and Configuration of Resources -Azure Resource Manager Templates-Save a Template for a VM-Evaluate Location of New Resources-Configure a Virtual Hard Disk Template-Deploy from a Template-Create and Execute an Automation Runbook Module 3: Implement Virtual Networking -Virtual Network Peering-Implement VNet Peering Module 4: Implement Load Balancing and Network Security -Implement Azure Load Balancer-Implement an Application Gateway-Understand Web Application Firewall-Implement Azure Firewall-Implement Azure Front Door-Implementing Azure Traffice Manager-Implement Network Security Groups and Application Security Grou-Implement Azure Bastion Module 5: Implement Storage Accounts -Storage Accounts-Blob Storage-Storage Security-Managing Storage-Accessing Blobs and Queues using AAD-Configure Azure Storage Firewalls and Virtual Networks Module 6: Implement Azure Active Directory -Overview of Azure Active Directory-Users and Groups-Domains and Custom Domains-Azure AD Identity Protection-Implement Conditional Access-Configure Fraud Alerts for MFA-Implement Bypass Options-Configure Trusted IPs-Configure Guest Users in Azure AD-Manage Multiple Directori Module 7: Implement and Manage Azure Governance -Create Management Groups, Subscriptions, and Resource Groups-Overview of Role-Based Access Control (RBAC)-Role-Based Access Control (RBAC) Roles-Azure AD Access Reviews-Implement and Configure an Azure Policy-Azure Blueprints Module 8: Implement and Manage Hybrid Identities -Install and Configure Azure AD Connect-Configure Password Sync and Password Writeback-Configure Azure AD Connect Health Module 9: Manage Workloads in Azure -Migrate Workloads using Azure Migrate-VMware - Agentless Migration-VMware - Agent-Based Migration-Implement Azure Backup-Azure to Azure Site Recovery-Implement Azure Update Management Module 10: Implement Cloud Infrastructure Monitoring -Azure Infrastructure Security Monitoring-Azure Monitor-Azure Workbooks-Azure Alerts-Log Analytics-Network Watcher-Azure Service Health-Monitor Azure Costs-Azure Application Insights-Unified Monitoring in Azure Module 11: Manage Security for Applications -Azure Key Vault-Azure Managed Identity Module 12: Implement an Application Infrastructure -Create and Configure Azure App Service-Create an App Service Web App for Containers-Create and Configure an App Service Plan-Configure Networking for an App Service-Create and Manage Deployment Slots-Implement Logic Apps-Implement Azure Functions Module 13: Implement Container-Based Applications -Azure Container Instances-Configure Azure Kubernetes Service Module 14: Implement NoSQL Databases -Configure Storage Account Tables-Select Appropriate CosmosDB APIs Module 15: Implement Azure SQL Databases -Configure Azure SQL Database Settings-Implement Azure SQL Database Managed Instances-High-Availability and Azure SQL Database [-]
Les mer
1 dag 8 000 kr
This course introduces fundamentals concepts related to artificial intelligence (AI), and the services in Microsoft Azure that can be used to create AI solutions. [+]
COURSE OVERVIEW The course is not designed to teach students to become professional data scientists or software developers, but rather to build awareness of common AI workloads and the ability to identify Azure services to support them. The course is designed as a blended learning experience that combines instructor-led training with online materials on the Microsoft Learn platform (https://azure.com/learn). The hands-on exercises in the course are based on Learn modules, and students are encouraged to use the content on Learn as reference materials to reinforce what they learn in the class and to explore topics in more depth. TARGET AUDIENCE The Azure AI Fundamentals course is designed for anyone interested in learning about the types of solution artificial intelligence (AI) makes possible, and the services on Microsoft Azure that you can use to create them. You don’t need to have any experience of using Microsoft Azure before taking this course, but a basic level of familiarity with computer technology and the Internet is assumed. Some of the concepts covered in the course require a basic understanding of mathematics, such as the ability to interpret charts. The course includes hands-on activities that involve working with data and running code, so a knowledge of fundamental programming principles will be helpful. COURSE OBJECTIVES  After completing this course, you will be able to: Describe Artificial Intelligence workloads and considerations Describe fundamental principles of machine learning on Azure Describe features of computer vision workloads on Azure Describe features of Natural Language Processing (NLP) workloads on Azure Describe features of conversational AI workloads on Azure   COURSE CONTENT Module 1: Introduction to AI In this module, you'll learn about common uses of artificial intelligence (AI), and the different types of workload associated with AI. You'll then explore considerations and principles for responsible AI development. Artificial Intelligence in Azure Responsible AI After completing this module you will be able to Describe Artificial Intelligence workloads and considerations Module 2: Machine Learning Machine learning is the foundation for modern AI solutions. In this module, you'll learn about some fundamental machine learning concepts, and how to use the Azure Machine Learning service to create and publish machine learning models. Introduction to Machine Learning Azure Machine Learning After completing this module you will be able to Describe fundamental principles of machine learning on Azure Module 3: Computer Vision Computer vision is a the area of AI that deals with understanding the world visually, through images, video files, and cameras. In this module you'll explore multiple computer vision techniques and services. Computer Vision Concepts Computer Vision in Azure After completing this module you will be able to Describe features of computer vision workloads on Azure Module 4: Natural Language Processing This module describes scenarios for AI solutions that can process written and spoken language. You'll learn about Azure services that can be used to build solutions that analyze text, recognize and synthesize speech, translate between languages, and interpret commands. After completing this module you will be able to Describe features of Natural Language Processing (NLP) workloads on Azure Module 5: Conversational AI Conversational AI enables users to engage in a dialog with an AI agent, or *bot*, through communication channels such as email, webchat interfaces, social media, and others. This module describes some basic principles for working with bots and gives you an opportunity to create a bot that can respond intelligently to user questions. Conversational AI Concepts Conversational AI in Azure After completing this module you will be able to Describe features of conversational AI workloads on Azure   TEST CERTIFICATION Recommended as preparation for the following exams: Exam AI-900: Microsoft Azure AI Fundamentals. HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer
3 dager 4 515 kr
På forespørsel
Kandidaten skal bl.a. kunne begrunne IT-investeringer og få kjennskap til noen av de juridiske og etiske aspekter ved bruken av IT [+]
Kursinnhold• Organisasjoner og bruk av IT• IT- ledelse  • Verdsettelse av IT• Den globale nettverksøkonomien• Prosjektledelse• Samarbeid og kommunikasjon• Juridiske og etiske problemstillinger   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.   InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.   MålsetningModul Plan, ser på organisasjoner og deres bruk av IT, både som en tilrettelegger for effektive informasjonsystemer, og som en plattform for innovasjon. Modulen krever at kandidaten skal ha en grundig forståelse av organisasjoner, deres strategier og forretningsprosesser, samt de globale trender og muligheter som er involvert. Kandidaten skal kjenne igjen de viktigste problemstillinger knyttet til styringen av IT, som for eksempel å velge riktig teknologi, eller å velge mellom utvikling av interne systemer eller outsourcing. Kandidaten skal også kunne begrunne IT-investeringer og få kjennskap til noen av de juridiske og etiske aspekter ved bruken av IT. Kandidaten skal bli oppmerksomm på kravet om en profesjonell tilnærming til prosjektledelse og kvalitetsikring. Kandidaten skal også forstå betydningen av teambygging og effektivt kommunikasjon når man presenterer sin analyse eller beslutning for organisasjonen. [-]
Les mer
Virtuelt klasserom 2 dager 14 000 kr
In this course, the students will design various data platform technologies into solutions that are in line with business and technical requirements. This can include on-... [+]
The students will also explore how to design data security including data access, data policies and standards. They will also design Azure data solutions which includes the optimization, availability and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Data Platform Architecture Considerations. -Core Principles of Creating Architectures-Design with Security in Mind-Performance and Scalability-Design for availability and recoverability-Design for efficiency and operations-Case Study Module 2: Azure Batch Processing Reference Architectures. -Lambda architectures from a Batch Mode Perspective-Design an Enterprise BI solution in Azure-Automate enterprise BI solutions in Azure-Architect an Enterprise-grade Conversational Bot in Azure Module 3: Azure Real-Time Reference Architectures. -Lambda architectures for a Real-Time Perspective-Lambda architectures for a Real-Time Perspective-Design a stream processing pipeline with Azure Databricks-Create an Azure IoT reference architecture Module 4: Data Platform Security Design Considerations. -Defense in Depth Security Approach-Network Level Protection-Identity Protection-Encryption Usage-Advanced Threat Protection Module 5: Designing for Resiliency and Scale. -Design Backup and Restore strategies-Optimize Network Performance-Design for Optimized Storage and Database Performance-Design for Optimized Storage and Database Performance-Incorporate Disaster Recovery into Architectures-Design Backup and Restore strategies Module 6: Design for Efficiency and Operations. -Maximizing the Efficiency of your Cloud Environment-Use Monitoring and Analytics to Gain Operational Insights-Use Automation to Reduce Effort and Error [-]
Les mer
Virtuelt klasserom 4 dager 24 500 kr
This course teaches Solutions Architects how to translate business requirements into secure, scalable, and reliable solutions. Lessons include design considerations relat... [+]
Recommend solutions to minimize costs Recommend a solution for Conditional Access, including multi-factor authentication Recommend a solution for a hybrid identity including Azure AD Connect and Azure AD Connect Recommend a solution for using Azure Policy Recommend a solution that includes KeyVault Recommend a solution that includes Azure AD Managed Identities Recommend a storage access solution Design and Azure Site Recovery solution Recommend a solution for autoscaling Recommend a solution for containers Recommend a solution for network security Recommend a solution for migrating applications and VMs Recommend a solution for migration of databases  Agenda Module 1: Design for Cost Optimization -Recommend Solutions for Cost Management-Recommended Viewpoints for Minimizing Costs Module 2: Design a Solution for Logging and Monitoring -Azure Monitoring Services-Azure Monitor Module 3: Design Authentication -Recommend a Solution for Multi-Factor Authentication-Recommend a Solution for Single-Sign On (SSO)-Five Steps for Securing Identity Infrastructure-Recommend a Solution for a Hybrid Identity-Recommend a Solution for B2B Integration Module 4: Design Authorization -Infrastructure Protection-Recommend a Hierarchical Structure for Management Groups, Subscriptions and Resource Groups Module 5: Design Governance -Recommend a Solution for using Azure Policy-Recommend a Solution for using Azure Blueprint Module 6: Design Security for Applications -Recommend a Solution using KeyVault-Recommend a Solution using Azure AD Managed Identities Module 7: Design a Solution for Databases Select an Appropriate Data Platform Based on RequirementsOverview of Azure Data StorageRecommend Database Service Tier SizingDynamically Scale Azure SQL Database and Azure SQL Managed InstancesRecommend a Solution for Encrypting Data at Rest, Transmission, and In Use Module 8: Design Data Integration -Recommend a Data Flow-Recommend a Solution for Data Integration Module 9: Select an Appropriate Storage Account -Understanding Storage Tiers-Recommend a Storage Access Solution-Recommend Storage Management Tools Module 10: Design a Solution for Backup and Recovery -Recommend a Recovery Solution for Hybrid and On-Premises Workloads-Design and Azure Site Recovery Solution-Recommend a Solution for Recovery in Different Regions-Recommend a Solution for Azure Backup Management-Design a Solution for Data Archiving and Retention Module 11: Design for High Availability -Recommend a Solution for Application and Workload Redundancy-Recommend a Solution for Autoscaling-Identify Resources that Require High Availability-Identify Storage Tpes for High Availability-Recommend a Solution for Geo-Redundancy of Workloads Module 12: Design a Compute Solution -Recommend a Solution for Compute Provisioning-Determine Appropriate Compute Technologies-Recommend a Solution for Containers-Recommend a Solution for Automating Compute Management Module 13: Design a Network Solution -Recommend a Solution for Network Addressing and Name Resolution-Recommend a Solution for Network Provisioning-Recommend a Solution for Network Security-Recommend a Solution for iInternete Connectivity and On-Premises Networks,-Recommend a Solution for Automating Network Management-Recommend a Solution for Load Balancing and Rraffic Routing Module 14: Design an Application Architecture -Recommend a Microservices Architecture-Recommend an Orchestration Solution for Deployment of Applications-Recommend a Solution for API Integration Module 15: Design Migrations -Assess and On-Premises Servers and Applications for Migration-Recommend a Solution for Migrating Applications and VMs-Recommend a Solution for Migration of Databases [-]
Les mer