IT-kurs
Du har valgt: IT kompetanse
Nullstill
Filter
Ferdig

-

39 treff i IT kompetanse
 

Oslo Trondheim 2 dager 16 900 kr
05 Dec
27 Jan
17 Feb
Modern Application Architecture [+]
Modern Application Architecture [-]
Les mer
3 dager 4 515 kr
På forespørsel
Kandidaten skal bl.a. kunne begrunne IT-investeringer og få kjennskap til noen av de juridiske og etiske aspekter ved bruken av IT [+]
Kursinnhold• Organisasjoner og bruk av IT• IT- ledelse  • Verdsettelse av IT• Den globale nettverksøkonomien• Prosjektledelse• Samarbeid og kommunikasjon• Juridiske og etiske problemstillinger   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.   InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.   MålsetningModul Plan, ser på organisasjoner og deres bruk av IT, både som en tilrettelegger for effektive informasjonsystemer, og som en plattform for innovasjon. Modulen krever at kandidaten skal ha en grundig forståelse av organisasjoner, deres strategier og forretningsprosesser, samt de globale trender og muligheter som er involvert. Kandidaten skal kjenne igjen de viktigste problemstillinger knyttet til styringen av IT, som for eksempel å velge riktig teknologi, eller å velge mellom utvikling av interne systemer eller outsourcing. Kandidaten skal også kunne begrunne IT-investeringer og få kjennskap til noen av de juridiske og etiske aspekter ved bruken av IT. Kandidaten skal bli oppmerksomm på kravet om en profesjonell tilnærming til prosjektledelse og kvalitetsikring. Kandidaten skal også forstå betydningen av teambygging og effektivt kommunikasjon når man presenterer sin analyse eller beslutning for organisasjonen. [-]
Les mer
Virtuelt klasserom 2 dager 15 000 kr
This course will provide foundational level knowledge of cloud services and how those services are provided with Microsoft Azure. The course can be taken as an optional f... [+]
The course will cover general cloud computing concepts as well as general cloud computing models and services such as Public, Private and Hybrid cloud and Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS) and Software-as-a-Service (SaaS). It will also cover some core Azure services and solutions, as well as key Azure pillar services concerning security, privacy, compliance and trust. It will finally cover pricing and support services available.   Agenda Module 1: Cloud Concepts -Learning Objectives-Why Cloud Services?-Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)-Public, Private, and Hybrid cloud models Module 2: Core Azure Services -Core Azure architectural components-Core Azure Services and Products-Azure Solutions-Azure management tools Module 3: Security, Privacy, Compliance and Trust -Securing network connectivity in Azure-Core Azure Identity services-Security tools and features-Azure governance methodologies-Monitoring and Reporting in Azure-Privacy, Compliance and Data Protection standards in Azure Module 4: Azure Pricing and Support -Azure subscriptions-Planning and managing costs-Support options available with Azure-Service lifecycle in Azure [-]
Les mer
Oslo 5 dager 30 000 kr
10 Feb
10 Feb
07 Apr
https://www.glasspaper.no/kurs/dp-203-data-engineering-on-microsoft-azure/ [+]
DP-203: Data Engineering on Microsoft Azure [-]
Les mer
4 dager 4 865 kr
På forespørsel
Modul Build består av de tradisjonelle, tekniske aspektene ved design, spesifikasjon, utvikling, testing, integrering og anvendelse av IT-systemer [+]
Kursinnhold• Systemutvikling, prosess og metode• Datahåndteringe og databaser  • Programmering• Brukergrensesnitt og webdesign   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.   InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.   Målsetning Modul Build består av de tradisjonelle, tekniske aspektene ved design, spesifikasjon, utvikling, testing, integrering og anvendelse av IT-systemer. Det krever at kandidaten forstår systemutviklingens livssyklus, kjenner til den typiske utviklingsprosessen og er klar over de nyeste utviklingstrekk innen programvare. Kandidaten skal også kunne benytte relevante metoder og verktøy. Kandidaten skal kjenne til designprinsipper knyttet til brukergrensesnitt, websider og hypermedia, så vel som de som brukes i relasjonsdatabaser og datavarehus. Kandidaten vil også få en grunnleggende kunnskap om søkespråk og være oppmerksom på noen viktige databaseadministrasjonsproblemer. I tillegg skal kandidaten være i stand til å anvende typiske datastrukturer og algoritmer, gjenkjenne ulike programmeringsspråk og konstruksjoner, vurdere problemer med å opprettholde systemer, samt kjenne til dokumentasjon og testing av software systemer. [-]
Les mer
Virtuelt klasserom 3 dager 23 650 kr
05 Nov
Due to the Coronavirus the course instructor is not able to come to Oslo. As an alternative we offer this course as a Blended Virtual Course. [+]
Blended Virtual Course The course is a hybrid of virtual training and self-study which will be a mixture of teaching using Microsoft Teams for short bursts at the beginning of the day, then setting work for the rest of the day and then coming back at the end of the day for another on-line session for any questions before setting homework in the form of practice exams for the evening. You do not have to install Microsoft Teams , you will receive a link and can access the course using the web browser.  Remote proctored examTake your exam from any location. Read about iSQI remote proctored exam here Requirements for the exam: The exam will be using Google Chrome and there is a plug-in that needs to be installed  You will need a laptop/PC with a camera and a microphone  A current ID with a picture  This 3-day course is aimed at anyone wishing to attain the ISTQB Advanced Test Automation Engineer qualification. This qualification builds upon the Foundation syllabus and provides essential skills for all those involved in test automation and who want to develop further their expertise in one or more specific areas. Bouvet sine kursdeltakeres testresultater vs ISTQB gjennomsnitt A Test Automation Engineer is one who has broad knowledge of testing in general, and an in-depth understanding in the special area of test automation. An in-depth understanding is defined as having sufficient knowledge of test automation theory and practice to be able to influence the direction that an organization and/or project takes when designing, developing and maintaining test automation solutions for functional tests. The modules offered at the Advanced Level Specialist cover a wide range of testing topics.   The course is highly practical addressing the following areas: Introduction and objectives for Test Automation This section provides an introduction to test automation explaining the objectives, advantages, disadvantages and limitations of test automation as well as technical success factors of a test automation project. Preparing for Test Automation Understanding the type of system is vital for determining the most appropriate automation solution and also how we can design systems and testing for more effective automation. This section also looks at how we can evaluate for the most appropriate tools. The generic Test Automation architecture A test automation engineer has the role of designing, developing, implementing, and maintaining test automation solutions. As each solution is developed, similar tasks need to be done, similar questions need to be answered, and similar issues need to be addressed and prioritized. These reoccurring concepts, steps, and approaches in automating testing become the basis of the generic test automation architecture, and this will be discussed in detail during this section Deployment risks and contingencies This section looks at the various risks associated with the deployment of test tools and how to avoid test automation failure. Test Automation reporting and metrics Providing information to stakeholders for them to make informed decisions about the quality of the software is a vital part of testing and this section looks at the various metrics that can be used to monitor test automation and what information should be supplied to the stakeholder and how it should be presented. Transitioning manual testing to an automated environment This section looks at the various criteria to apply to determine the suitability for automation and understanding the factors for transitioning from manual to automation testing Verifying the Test Automation solution To have justified confidence in the information we supply to the stakeholders regarding test automation we must have justified confidence in the test environment and test automation solution supporting the information Continuous improvement This section looks ahead and how we can improve the automation solution making it more effective and efficient The Exam The ISTQB Advanced Test Automation Engineer exam is a 1 hour 30 minute, 40 question multiple-choice exam totaling 75 points. The pass mark is 65% (49 out of 75). It is a pre-requisite that attendees hold the ISTQB Foundation Level certificate. [-]
Les mer
Nettkurs 375 kr
I dette kurset gir Inga Strümke deg en innføring i hva kunstig intelligens er, og hva du bør tenke på når din bedrift skal ta i bruk kunstig intelligens. [+]
Inga Strümke gir deg en innføring i kunstig intelligens og maskinlæring som gjør det lettere å ta bedre beslutninger. Kunstig intelligens (AI) er mer i vinden enn noensinne, men visste du at det har eksistert som akademisk fagfelt siden 1950-tallet? I dette kurset får du en innføring i hva kunstig intelligens egentlig er for noe, hvordan det brukes i dag og hvordan du kan anvende det for å ta bedre beslutninger. Du lærer om maskinlæring og nevrale nettverk, og hvordan dyp læring brukes til komplekse problemer som språkforståelse og bildegjenkjenning. Du får innsikt i fallgruver, hvorfor de oppstår og hvordan de kan unngås, og ikke minst – hva du bør tenke på når din bedrift skal ta i bruk kunstig intelligens.  HVA VIL DU LÆRE: Kunstig intelligens Maskinlæring, dyp læring og nevrale nettverk Data Bildegjenkjenning og språkforståelse Proxyvariabler og korrelasjon i modeller Forklaringer: Hva og for hvem? Integrering i bedriften Leksjoner Introduksjon til kurset Innføring i kunstig intelligens og algoritmer Maskinlæring Data  Nevrale nettverk og dyp læring Bildegjenkjenning Språkmodeller Proxy-variabler og et eksempel fra forsikring Korrelasjon og kausalitet  Forklaring - hva og for hvem? Eksempler på bruk Helhetlig integrering  Oppsummering [-]
Les mer
Virtuelt klasserom 3 dager 24 500 kr
In this course students will gain the knowledge and skills needed to implement security controls, maintain the security posture, and identify and remediate vulnerabilitie... [+]
Objectives Describe specialized data classifications on Azure Identify Azure data protection mechanisms Implement Azure data encryption methods Secure Internet protocols and how to implement them on Azure Describe Azure security services and features Agenda Module 1: Identity and Access -Configure Azure Active Directory for Azure workloads and subscriptions-Configure Azure AD Privileged Identity Management-Configure security for an Azure subscription Module 2: Platform Protection -Understand cloud security-Build a network-Secure network-Implement host security-Implement platform security-Implement subscription security Module 3: Security Operations -Configure security services-Configure security policies by using Azure Security Center-Manage security alerts-Respond to and remediate security issues-Create security baselines Module 4: Data and applications -Configure security policies to manage data-Configure security for data infrastructure-Configure encryption for data at rest-Understand application security-Implement security for application lifecycle-Secure applications-Configure and manage Azure Key Vault       [-]
Les mer
Oslo 5 dager 30 000 kr
18 Nov
18 Nov
20 Jan
AI-102: Designing and Implementing a Microsoft Azure AI Solution [+]
AI-102: Designing and Implementing a Microsoft Azure AI Solution [-]
Les mer
6 dager 7 525 kr
På forespørsel
Modul Plan, ser på organisasjoner og deres bruk av IT, både som en tilrettelegger for effektive informasjonsystemer, og som en plattform for innovasjon [+]
Kursinnhold     * Organisasjoner og bruk av IT    * IT- ledelse                     * Verdsettelse av IT    * Den globale nettverksøkonomien    * Prosjektledelse    * Samarbeid og kommunikasjon    * Juridiske og etiske problemstillinger   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.     InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.     MålsetningModul Plan, ser på organisasjoner og deres bruk av IT, både som en tilrettelegger for effektive informasjonsystemer, og som en plattform for innovasjon. Modulen krever at kandidaten skal ha en grundig forståelse av organisasjoner, deres strategier og forretningsprosesser, samt de globale trender og muligheter som er involvert. Kandidaten skal kjenne igjen de viktigste problemstillinger knyttet til styringen av IT, som for eksempel å velge riktig teknologi, eller å velge mellom utvikling av interne systemer eller outsourcing. Kandidaten skal også kunne begrunne IT-investeringer og få kjennskap til noen av de juridiske og etiske aspekter ved bruken av IT.   Kandidaten skal bli oppmerksom på kravet om en profesjonell tilnærming til prosjektledelse og kvalitetsikring. Kandidaten skal også forstå betydningen av teambygging og effektivt kommunikasjon når man presenterer sin analyse eller beslutning for organisasjonen.   [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
4 dager 4 865 kr
På forespørsel
Modul Operate omhandler nettverk og relaterte kommunikasjonstjenester innen en IT-infrastruktur, samt vedlikehold og brukerproblemstillinger i forhold til tjenestetilbude... [+]
Kursinnhold• Hardwarekomponenter og arkitektur• Operativsystemer  • Kommunikasjon og nettverk• Nettverkstjenester• Trådløs og mobil databehandling• Nettverksadministrasjon• Service og support   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.   InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.   MålsetningModul Operate omhandler nettverk og relaterte kommunikasjonstjenester innen en IT- infrastruktur, samt vedlikehold og brukerproblemstillinger i forhold til tjenestetilbudet. Modulen krever at kandidaten skal kjenne til hardware komponenter, dataarkitekturer og forskjellige operativsystemer. Kandidaten skal også skille mellom ulike nivåer av kommunikasjonsprotokoller, og deres bruk i både kablede og trådløse nettverksteknologier. Dessuten skal kandidaten forstå Simple Network Management Protocol (SNMP), e-post og webtjenester, og de tilhørende sikkerhetstrusler og mottiltak. Kandidaten skal forstå betydningen av en klient-orientert tilnærming til IT-støtte, og kunne benytte noen av de grunnleggende prinsipper for IT-support.. [-]
Les mer
8 dager 8 925 kr
På forespørsel
Kandidaten vil bl.a. få en grunnleggende kunnskap om søkespråk og være oppmerksom på noen viktige databaseadministrasjonsproblemer [+]
Kursinnhold• Systemutvikling, prosess og metode• Datahåndteringe og databaser  • Programmering• Brukergrensesnitt og webdesign   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.   InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.     [-]
Les mer
Oslo 1 dag 9 500 kr
28 Nov
28 Nov
AI-050: Develop Generative AI Solutions with Azure OpenAI Service [+]
AI-050: Develop Generative AI Solutions with Azure OpenAI Service [-]
Les mer
Oslo 5 dager 40 000 kr
18 Nov
18 Nov
10 Feb
CEH: Certified Ethical Hacker v13 [+]
CEH: Certified Ethical Hacker v13 [-]
Les mer