Alle kategorier
Du har valgt: IT-kurs
Nullstill
Filter
Ferdig

-

Mer enn 100 treff i IT-kurs
 

Nettkurs 365 dager 2 995 kr
Excel for Selgere - elæringskurs [+]
Excel for Selgere - elæringskurs [-]
Les mer
Oslo Trondheim 2 dager 16 900 kr
27 Jan
17 Feb
24 Mar
Modern Application Architecture [+]
Modern Application Architecture [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Majorstuen 1 dag 5 900 kr
Fra og med Microsoft Office 2019 – etterhvert Microsoft 365 – har abonnenter får nye oppdateringer flere ganger i året. I dette kurset ser vi på noen av de viktigste forb... [+]
Fra og med Microsoft Office 2019 – etterhvert Microsoft 365 – har abonnenter får nye oppdateringer flere ganger i året. I dette kurset ser vi på noen av de viktigste forbedringene i denne perioden.Vi utforsker både funksjoner og funksjonalitet.Vi ser blant annet på:•   Tabeller•   Rask utfylling•   Navn på celler og områder•   Overflyt•   Tegne fanen•   Eksempler på nye funksjoner      o   Xoppslag      o   Kjed.Sammen/      o   .Sett familien – gjør det mulig å ha flere kriterier. (eksempel: summer.hvis.sett/sumifs)       o   La      o   Xsamsvar      o   Rad, kolonne og matrisefunksjoner•   Dynamiske matriser   [-]
Les mer
Virtuelt klasserom 2 dager 13 500 kr
03 Feb
XML er en moden standard for å utveksle informasjon mellom applikasjoner. Med XML og relaterte standarder som XSL(T) og XQuery er det mulig å utvikle distribuerte nettbas... [+]
Kursinstruktør Terje Berg-Hansen Terje Berg-Hansen har bred erfaring fra prosjektledelse, utvikling og drift med små og store databaser, både SQL- og NoSQL-baserte. I tillegg til å undervise i etablerte teknologier leder han også Oslo Hadoop User Group, og er levende interessert i nye teknologier, distribuerte databaser og Big Data Science.    Kursinnhold XML er en moden standard for å utveksle informasjon mellom applikasjoner. Med XML og relaterte standarder som XSL(T) og XQuery er det mulig å utvikle distribuerte nettbaserte tjenester for utveksling av data i et standardisert format.    Målsetting Deltakerne vil etter kurset ha en grunnleggende forståelse av og kjennskap til hvorfor og hvordan XML kan anvendes for å oppnå en bedre utveksling og deling av strukturert og ustrukturert informasjon.   Forkunnskaper Grunnleggende kunnskaper om internett, HTML og CSS er en fordel, men ikke nødvendig for å ta dette kurset.   Kursinnhold Introduksjon Introduksjon til XML og XML-relaterte teknologier, som XPath, XQuery og XSL XML-verktøy Editorer og verktøy for validering, søk og endring av XML Grunnleggende XML XML struktur og syntaks. Gjennomgang av målene for XML. Lage og utforme XML dokumenter Navnerom (namespaces) Oppretting og bruk av navnerom for å skille elementer og funksjoner med samme navn. Validering av  XML Gjennomgang av teknologier som Document Type Definitions (DTD's) og XML Schemas for å kontrollere og styre struktur og data i XML filer Presentasjon av XML Bruk av html og CSS til å presentere XML data Søking i XML Søk i XML-dokumenter med XPath . Introduksjon til XSL(T) Kort om XSL og XSL Transformations. Bruk av XSLT til å formatere, sortere, filtrere og konvertere XML Data   Gjennomføring Kurset gjennomføres med en kombinasjon av online læremidler, gjennomgang av temaer og problemstillinger og praktiske øvelser. Det er ingen avsluttende eksamen, men det er øvelsesoppgaver til hovedtemaene som gjennomgås.   [-]
Les mer
Bedriftsintern 3 dager 27 000 kr
In this course, application developers learn how to design, develop, and deploy applications that seamlessly integrate components from the Google Cloud ecosystem. [+]
Through a combination of presentations, demos, and hands-on labs, participants learn how to use GCP services and pre-trained machine learning APIs to build secure, scalable, and intelligent cloud-native applications. Objectives This course teaches participants the following skills: Use best practices for application development Choose the appropriate data storage option for application data Implement federated identity management Develop loosely coupled application components or microservices Integrate application components and data sources Debug, trace, and monitor applications Perform repeatable deployments with containers and deployment services Choose the appropriate application runtime environment; use Google Container Engine as a runtime environment and later switch to a no-ops solution with Google App Engine Flex All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Best Practices for Application Development -Code and environment management-Design and development of secure, scalable, reliable, loosely coupled application components and microservices-Continuous integration and delivery-Re-architecting applications for the cloud Module 2: Google Cloud Client Libraries, Google Cloud SDK, and Google Firebase SDK -How to set up and use Google Cloud Client Libraries, Google Cloud SDK, and Google Firebase SDK-Lab: Set up Google Client Libraries, Google Cloud SDK, and Firebase SDK on a Linux instance and set up application credentials Module 3: Overview of Data Storage Options -Overview of options to store application data-Use cases for Google Cloud Storage, Google Cloud Datastore, Cloud Bigtable, Google Cloud SQL, and Cloud Spanner Module 4: Best Practices for Using Cloud Datastore -Best practices related to the following:-Queries-Built-in and composite indexes-Inserting and deleting data (batch operations)-Transactions-Error handling-Bulk-loading data into Cloud Datastore by using Google Cloud Dataflow-Lab: Store application data in Cloud Datastore Module 5: Performing Operations on Buckets and Objects -Operations that can be performed on buckets and objects-Consistency model-Error handling Module 6: Best Practices for Using Cloud Storage -Naming buckets for static websites and other uses-Naming objects (from an access distribution perspective)-Performance considerations-Setting up and debugging a CORS configuration on a bucket-Lab: Store files in Cloud Storage Module 7: Handling Authentication and Authorization -Cloud Identity and Access Management (IAM) roles and service accounts-User authentication by using Firebase Authentication-User authentication and authorization by using Cloud Identity-Aware Proxy-Lab: Authenticate users by using Firebase Authentication Module 8: Using Google Cloud Pub/Sub to Integrate Components of Your Application -Topics, publishers, and subscribers-Pull and push subscriptions-Use cases for Cloud Pub/Sub-Lab: Develop a backend service to process messages in a message queue Module 9: Adding Intelligence to Your Application -Overview of pre-trained machine learning APIs such as Cloud Vision API and Cloud Natural Language Processing API Module 10: Using Cloud Functions for Event-Driven Processing -Key concepts such as triggers, background functions, HTTP functions-Use cases-Developing and deploying functions-Logging, error reporting, and monitoring Module 11: Managing APIs with Google Cloud Endpoints -Open API deployment configuration-Lab: Deploy an API for your application Module 12: Deploying an Application by Using Google Cloud Build, Google Cloud Container Registry, and Google Cloud Deployment Manager -Creating and storing container images-Repeatable deployments with deployment configuration and templates-Lab: Use Deployment Manager to deploy a web application into Google App Engine flexible environment test and production environments Module 13: Execution Environments for Your Application -Considerations for choosing an execution environment for your application or service:-Google Compute Engine-Kubernetes Engine-App Engine flexible environment-Cloud Functions-Cloud Dataflow-Lab: Deploying your application on App Engine flexible environment Module 14: Debugging, Monitoring, and Tuning Performance by Using Google Stackdriver -Stackdriver Debugger-Stackdriver Error Reporting-Lab: Debugging an application error by using Stackdriver Debugger and Error Reporting-Stackdriver Logging-Key concepts related to Stackdriver Trace and Stackdriver Monitoring.-Lab: Use Stackdriver Monitoring and Stackdriver Trace to trace a request across services, observe, and optimize performance [-]
Les mer
1 dag 5 900 kr
Dette kurset gir deg en introduksjon til teknologien samt mulighetene og begrensningene den gir. Videre vil det bli gitt en innføring i hvordan man kan forbedre bruken av... [+]
Dette kurset gir en introduksjon til Generativ KI, samt bruken av bildegenerering som Stable Diffusion og Dall-E, og tekstgenerering som ChatGPT og Google’s Bard. Deltakerne vil i løpet av kurset få en introduksjon til teknologien samt mulighetene og begrensningene den gir. Videre vil det bli gitt en innføring i hvordan en kan forbedre bruken av verktøyene.   Kursinnhold Generativ KI har har satt kunstig intelligens på kartet etter at OpenAI offentliggjorde ChatGPT. Kurset vil ta for seg hva Generativ KI er med tekst- og bildegerenerering som bakteppe, og ha fokus på hvordan man kan bruke disse teknologiene i arbeidssammenheng. Vi går igjennom hva man må tenke igjennom før man tar i bruk teknologien og hva man gir fra seg av informasjon. Videre ser vi på hvordan vi kan bruke det sett fra ulike fagretningers ståsted og gir generelle tips for hvordan du kan oppnå bedre resultater ved bruk av verktøyene. Intro til Generativ KI Sikkerhet og etikk Inspirasjon til bruk Arbeide med og gjennomgang av god bruk av verktøyene Oppsummering og veien videre   Målgruppe Kurset er ikke-teknisk, og fokuserer på måter å formulere spørsmål som gir en bedre resultater. Kurset passer derfor for alle som bruker eller ønsker å ta i bruk denne teknologien og ønsker å utnytte den på en bedre måte.   Målsettning Målsetningen for kurset er at deltakerne skal vite hva Generativ KI er, hvilke hensyn man må ta med tanke på sikkerhet og etikk i bruken av Generativ KI verktøy samt lære hvordan man kan forbedre bruken av tekst- og bildegenereringsverktøy.   [-]
Les mer
Hele landet Sentrum 2 dager 9 800 kr
05 Dec
17 Mar
Har du jobbet litt med Adobe Photoshop, men ønsker å lære mer på et grunnleggende nivå? Da er dette grunnkurset perfekt for deg! [+]
Ønsker du en kjapp og smertefri introduksjon i verdens mest populære bildebehandlingsprogram? Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1    Innføring Fargemodellene RGB og CMYK Beskjæring av bildet til trykk eller skjerm Utskriftsoppløsning og kameraoppløsning Forstå hvordan oppløsning fungerer Hva er de vanligste filformatene å jobbe i   Arbeidsmiljø Menyer og paletter. Hva inneholder disse, og hvordan får du fram det du ønsker? Tilpasse arbeidsmiljøet. Flytte på paletter og lagre egne oppsett tilpasset dine behov Navigering og zoom. Fokuser på det du jobber med, se helheten, og gjør dette raskt og effektivt Adobe Bridge. Introduksjon til programmet som organiserer og forhåndsviser filer og gjør det enklere for deg å jobbe Nytt dokument. Hvordan lage og tilpasse nye dokumenter med marger, spalter, sidevisning med mer?   Retusjering Bli kjent med retusjeringsverktøyene Se på hvilke muligheter du har i nyere utgave av Photoshop Fjerne uønskede elementer i bilder   Lag Bli kjent med lagpaletten Opprette, slette og organisere lag Transformering av lag Lagstiler og justeringslag   Markeringer Lær å bruke de forskjellige markeringsverktøyene Gjøre endringer på markerte områder Kombiner markeringsverktøy for å kun få tak i det du ønsker Opprett lag på bakgrunn av markeringer   Dag 2   Bildejusteringer Justere kontrast og tonalitet i et bilde Jobbe med å gjøre bilde lysere og mørkere Justere farger i et bilde Bytte ut én farge med en annen   Kombiner ulike verktøy for å utnytte mulighetene i Photoshop Jobbe med et bilde med ulike verktøy Markering og bildejustering Markering og fjerning av bakgrunnselementer Bruke smartere markedsverktøy   Lagring Lær om de ulike filformatene vi bør kjenne til Lagring til web og komprimering av bilder Lagring til trykk   Jobbe med flere bilder Klippe ut fra et bilde og lime inn i et annet Tekstverktøyet og tekstpalettene Tegneverktøy   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
Virtuelt eller personlig 2 dager 9 250 kr
Lær å bruke egenutviklede scripts direkte i BIM-modellen både i forhold til arbeidet med geometri og BIM-data. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Dynamo for Revit Her er et utvalg av temaene du vil lære på kurset: Intro til brukerflate og grunnleggende funksjoner Dynamo – Revit-interaksjon Parametrisk/Regelbasert Design Geometri i Dynamo Plassering av Revit-elementer Datauttrekk Opprettelse av Analytisk modell Skrive i Revit-parametre/nummerering Tilpasning av Revit-elementer Import og behandling av ekstern geometri Kjenner du til Grasshopper for Rhino og ønsker å komme videre med komplekse geometrier? I så fall er Dynamo en mulighet. Her kan regelbasert design settes opp med direkte integrasjon til Revit. Med Dynamo for Revit åpnes en verden med en hittil usett parametrisk tilgang til prosjektene. Med Dynamo som visuelt programmeringsverktøy kobles egne algoritmer sammen med Revits parametriske database, uansett om fokuset er formgivning, designoptimering, fabrikasjon eller automatisering. Dette, sammen med toveiskommunikasjonen mellom Dynamo og Revit, gjør kombinasjonen både sterk og unik.   Tilpassete kurs for bedrifter Vi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Nettstudie 1 semester 4 980 kr
På forespørsel
Nettstrukturer: LAN, VLAN, VPN, trådløst nett, virtuelle nett Nettutstyr: Svitsj, ruter, brannmur, basestasjon. Nettfunksjoner: Ruting, filtrering, tunnelering, port forw... [+]
Studieår: 2013-2014   Gjennomføring: Høst Antall studiepoeng: 5.0 Forutsetninger: Kunnskaper om grunnleggende datakommunikasjon, tilsvarende faget "Datakommunikasjon". Innleveringer: 8 av 12 øvinger må være godkjent for å få gå opp til eksamen. Personlig veileder: ja Vurderingsform: Skriftlig eksamen, individuell, 3 timer.  Ansvarlig: Olav Skundberg Eksamensdato: 16.12.13         Læremål: KUNNSKAPER:Kandidaten:- kan redegjøre for struktur og virkemåte for ulike typer lokale nettverk og nettverkskomponenter- kan redegjøre for kryptering og andre sikkerhetsmekanismer i kablet og trådløst nettverk- kan redegjøre for oversetting mellom interne og offentlige IP-adresser- kan redegjøre for nettverksadministrasjon og fjernpålogging på nettverksenheter FERDIGHETER:Kandidaten:- kan analysere pakketrafikk- kan konfigurere nettverk med virtuelle datamaskiner- kan administrere virtuelt nettverk og sette opp interne lukkede nettverk.- kan filtrere nettverkstrafikk i brannmur basert port, adresser og eksisterende forbindelser GENERELL KOMPETANSEKandidaten:- er bevisst på helhetlig samspill mellom de ulike teknologiene Innhold:Nettstrukturer: LAN, VLAN, VPN, trådløst nett, virtuelle nett Nettutstyr: Svitsj, ruter, brannmur, basestasjon. Nettfunksjoner: Ruting, filtrering, tunnelering, port forwarding, NAT, DHCP, IPv6. Nettadministrasjon: Fjernpålogging og trafikkanalyse.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Dette faget går: Høst 2013    Fag Nettverksteknologi 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Sentrum Hele landet 2 dager 12 490 kr
17 Dec
27 Feb
23 Apr
Excel Ekspert kurs for deg som ønsker en omfattende fordypning i Excel knyttet til formler og funksjoner, men som ikke har tid til å sette deg inn i dette på egenhånd... [+]
Excel Ekspert kurs for deg som ønsker en omfattende fordypning i Excel knyttet til formler og funksjoner, men som ikke har tid til å sette deg inn i dette på egenhånd. Vil du lære mer om håndtering av datagrunnlag og rapportering på grunnlag fra flere kilder, samt bygging av dynamiske modeller? Da er ”Excel Ekspert” kurset for deg! Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1   Funksjoner i Excel Utarbeidelse av dynamiske modeller ved bruk av navn og funksjoner. Funksjoner. Få oversikt over flere avanserte funksjoner samt se kraften av å bruke sammensatte funksjoner Navn. Bruk navn for å forenkle og tydeliggjøre formler og funksjoner. Lag dynamiske etiketter til diagrammer Matriseregning. Få en innføring i hvordan du kan jobbe med matrisefunksjonalitet i Excel.   Alternativknapper og kombinasjonsbokser Gjør modellene dine mer interaktive ved bruk av kontroller   Dag 2   Klargjøre data for beregninger ved bruk av PowerQuery Hva er PowerQuery? Lese inn data til PowerQuery fra ulike kilder Eksempel: tilføye og slå sammen Snu krysstabell Kobling til tekstfil med problemer Manglende struktur i kolonner. Lær hvordan du kan gjengi informasjon i regnearket slik at grunnlaget kan brukes til rapportering. Duplikater. Lær forskjellige måter å kvitte seg med duplikater på. Splitte informasjon. Lær forskjellige måter for å skille data i kolonner.   Beregninger ved bruk av Pivot Eksempel: prosentvis fordeling ”i år mot i fjor”. Pivotkonsolidering og datakonsolidering.   Makroer Innspilling av makro. Hvordan lage makroer for å automatisere rutinearbeid? Redigering av makroer. Lær hvordan makroer kan gjøres mer dynamiske, kombinert med navn og bruk av meldingsbokser og ”hvis” setninger. Demonstrere viktige VBA metoder 4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti     [-]
Les mer
Nettstudie 6 måneder 8 000 kr
Dette kurset gir deg en grunnleggende innføring i to-dimensjonal Datamaskin Assistert Konstruksjon (DAK). [+]
Dette kurset gir deg en grunnleggende innføring i to-dimensjonal Datamaskin Assistert Konstruksjon (DAK). Du får et grunnlag for videre studier, og kompetanse som gjør tegnearbeidet både utfordrende og interessant. Du lærer å bli fortrolig med å bruke denne type hjelpemiddel til tegnearbeid, teknisk tegning og revidering av tegninger.   Studentlisens for AutoCAD og Revit Structure/Architecture er inkludert. Kurset er på norsk, men AutoCAD-programmet er på engelsk. Programvaren er gratis. Du lærer å bruke de grunnleggende kommandoene slik at du kan utføre enklere tegnearbeid. Du blir fortrolig med å bruke denne type hjelpemiddel til tegnearbeid, teknisk tegning og revidering av tegninger. Du lærer å jobbe rasjonelt og å velge enkle løsninger. Bruk av flere lag med ulike farger gir god visualisering og bedre lesing av tegningene. Målsetting og teksting er viktig, og må utføres tydelig og på en riktig måte. Flater fylles med skravur og elementer kan lagres separat for senere bruk i andre tegninger. Kurset gir deg inngående informasjon gjennom studieveiledningen om hvordan du skal bruke de enkelte kommandoene. Det stilles krav til 100 % nøyaktighet, noe du oppnår når du jobber riktig. Du får øvelser med tegneoppgaver innen bygg, elektro, elkraft og maskin.   [-]
Les mer
Nettkurs 375 kr
Kurs i de mest praktiske hverdagstipsene for deg som bruker Excel jevnlig. Med Jon-Gunnar Pettersen. [+]
  Gode tips for jobbing med store tabeller og lister  Effektiv rydding i ruskete data og omgjøring av ulike datoformater Få kontroll på utskrifter – unngå 30 blanke ark Gode metoder for å lage mer robuste modeller som tåler endringer  Smart strukturering av regnearkene  Flere tips til praktisk bruk av Pivot  Hvordan bygge modeller som er ryddige og gode å vedlikeholde Mange små hurtigtaster og snarveier for å spare tid Dette kurset samler mange av de mest praktiske hverdagstipsene for deg som bruker Excel jevnlig. Rett på sak og mange smarte tips – her lærer du både ting du har slitt mye med, og ting du ikke ante at du trengte.  Introduksjon Tabell Del 1 – Lage, filter, sortere Tabell Del 2 – Formler Tabell Del 3 – Hurtigtaster og snarveier Kalkyler Del 1 – Navning Kalkyler Del 2 - De små smarte knepene Kalkyler Del 3 – Formler på tvers av ark Rydding Del 1 – Tekst til kolonne Rydding Del 2 – Format, dato Utskrift Pivot Del 1 – Intro Pivot Del 2 – Gruppering Pivot Del 3 – Formatering Pivot Del 4 – Slicer og grafer Formler Del 1 – finn.rad Formler Del 2 – Indeks Formler Del 3 – Hvisfeil / #IT [-]
Les mer
Oslo Bergen 2 dager 9 900 kr
16 Dec
18 Dec
10 Feb
Excel Videregående [+]
Excel Videregående [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
25 Nov
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer