Alle kategorier
Du har valgt: IT-kurs
Nullstill
Filter
Ferdig

-

Mer enn 100 treff i IT-kurs
 

Nettkurs 365 dager 2 995 kr
Excel for Selgere - elæringskurs [+]
Excel for Selgere - elæringskurs [-]
Les mer
Oslo Trondheim 2 dager 16 900 kr
27 Jan
17 Feb
24 Mar
Modern Application Architecture [+]
Modern Application Architecture [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
In this course, the students will implement various data platform technologies into solutions that are in line with business and technical requirements including on-premi... [+]
The students will also explore how to implement data security including authentication, authorization, data policies and standards. They will also define and implement data solution monitoring for both the data storage and data processing activities. Finally, they will manage and troubleshoot Azure data solutions which includes the optimization and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Azure for the Data Engineer -Explain the evolving world of data-Survey the services in the Azure Data Platform-Identify the tasks that are performed by a Data Engineer-Describe the use cases for the cloud in a Case Study Module 2: Working with Data Storage. -Choose a data storage approach in Azure-Create an Azure Storage Account-Explain Azure Data Lake storage-Upload data into Azure Data Lake Module 3: Enabling Team Based Data Science with Azure Databricks. -Explain Azure Databricks and Machine Learning Platforms-Describe the Team Data Science Process-Provision Azure Databricks and workspaces-Perform data preparation tasks Module 4: Building Globally Distributed Databases with Cosmos DB. -Create an Azure Cosmos DB database built to scale-Insert and query data in your Azure Cosmos DB database-Provision a .NET Core app for Cosmos DB in Visual Studio Code-Distribute your data globally with Azure Cosmos DB Module 5: Working with Relational Data Stores in the Cloud. -SQL Database and SQL Data Warehouse-Provision an Azure SQL database to store data-Provision and load data into Azure SQL Data Warehouse Module 6: Performing Real-Time Analytics with Stream Analytics. Module 7: Orchestrating Data Movement with Azure Data Factory. -Explain how Azure Data Factory works-Create Linked Services and datasets-Create pipelines and activities-Azure Data Factory pipeline execution and triggers Module 8: Securing Azure Data Platforms. -Configuring Network Security-Configuring Authentication-Configuring Authorization-Auditing Security Module 9: Monitoring and Troubleshooting Data Storage and Processing. -Data Engineering troubleshooting approach-Azure Monitoring Capabilities-Troubleshoot common data issues-Troubleshoot common data processing issues Module 10: Integrating and Optimizing Data Platforms. -Integrating data platforms-Optimizing data stores-Optimize streaming data-Manage disaster recovery [-]
Les mer
Virtuelt klasserom 3 dager 15 900 kr
This course provides IT leaders, practitioners, support staff and staff interfacing with the organisation’s digital and information systems functions with a practical und... [+]
COURSE OVERVIEW . It also prepares delegates for the ITIL Foundation Certificate Examination. The course is based on the ITIL4 best practice service value system featured in the latest 2019 guidelines. TARGET AUDIENCE This course is aimed at all levels of IT professional and those involved in designing, building, delivering and managing modern digital products and services. COURSE OBJECTIVES After you complete this course you will be able to: Key IT service management concepts. How ITIL guiding principles can help and organization to adopt and adapt service management. The 4 dimensions of service management. The purpose and components of the service value system. The activities of the service value chain and how the interconnect. Know the purpose of key ITIL practices. Sit the ITIL4 foundation examination - Sample papers are set during the class by instructors to take during the class or as homework exercises. COURSE CONTENT IT Service Management definitions; Service, Utility, Warranty, Customer, User, Service management, Sponsor Key concepts of value creation Key concepts of service relationships; service offering; service provision; service consumption; service relationship management The nature, use and interaction of 7 ITIL guiding principles; Focus on value; Start where you are; Progress iteratively with feedback; Collaborate and promote visibility; Think and work holistically; Keep it simple and practical; Optimize and automate The 4 dimensions of service management; Organizations and people; Information and technology; Partners and suppliers; Value streams and processes    The ITIL service value system The service value chain, its inputs and outputs, and its role in supporting value streams Service value chain elements; Plan, Improve, Engage, Design & transition, Obtain / Build, Deliver & support Detail of how the following ITIL practices support the service value chain: -  Continual Improvement (including continual improvement model); Change control; Incident management; Problem Management; Service request management;  Service desk; Service level management The purpose of the following ITIL practices: - Information security management; Relationship management; Supplier management; Availability management; Capacity and performance management; Service configuration management;    IT asset management; Business analysis; Service continuity management; Deployment management; Monitoring and event management; Release management   TEST CERTIFICATION Recommended preparation for exam(s): ITIL4 Foundation Certificate in IT Service Management This is a pre-requisite for other ITIL4 qualifications. The examination is a 1 hour, closed book, multiple choice paper of 40 questions taken after completion of the course - exam vouchers are provided with this course. These will have a validity of 12 months. You will need to schedule your exams within this time frame. The pass mark is 65% (26 out of 40) Cost of the exam is included in the course fee [-]
Les mer
Sentrum 1 dag 8 500 kr
03 Dec
07 Jan
Dette éndagskurset gir ledere praktisk trening i cybersikkerhetsledelse, med fokus på strategisk IT-planlegging, risikohåndtering, og utvikling av effektive sikkerhetsrut... [+]
I en digital tidsalder hvor samhandling er essensielt for bedrifters suksess, er det kritisk for ledere å oppdatere sin kompetanse. Dette éndagskurset tilbyr praktisk trening og materiale for videre selvstudium, slik at ledere kan møte dagens databehov effektivt. Kurset fokuserer på tre hovedområder for å styrke deltakernes lederkompetanse innen datahåndtering. Det kombinerer teori og praksis for å maksimere læringen. Kurset avholdes på én arbeidsdag, med en strukturert agenda som dekker følgende temaer: Strategiske IT/IS-planer, inkludert organisatoriske strukturer, lederansvar, kompetansekartlegging, IT/IS-policyer, og en gjennomgang av IS-domener. Dette inkluderer også sikkerhetsaspekter som aktiva, nettverk, identitets- og tilgangsstyring, risikostyring, sikkerhetsvurdering og -testing, sikkerhetsoperasjoner, og sikkerhet i utviklingsfasen. Intern gapanalyse, oppbygging av en effektiv Enterprise Information Security Architecture (EISA), definering av opplæringskrav, tilpassede SETA-programmer, trusselvurdering, håndtering av sårbarheter, og en praktisk tilnærming til leverandørrisiko og sikkerhetsvurdering av digitale nettverk. Utvikling av KPI-dashboards, trusselvurdering, kommunikasjonsstrategier, introduksjon til økonomiske nøkkeltall innen informasjonssikkerhet, samt planlegging for forretningskontinuitet og katastrofegjenoppretting. Målsettingen er at hver deltaker etter kurset skal kunne sette SMART-mål for hvert punkt, hvor SMART representerer Spesifikke, Målbare, Oppnåelige, Relevante og Tidsbestemte mål. Kurset gir deltakerne verktøyene de trenger for å forbedre sitt lederskap i en digitalisert verden. Kursholder har jobbet med informasjonssikkerhet for ledende teknologiselskaper de siste 25 årene, og har hjulpet ledere finne farbare veier i krevende situasjoner. Han er sertifisert kvalitetsrevisor ISO 19011 og har utarbeidet sikkerhetsstyringsrutiner for selskaper som følger både enkle og svært strenge lovkrav. Han har en Ph.D. i Cybersecurity Leadership, en MBA innen Finans, Digital transformasjon, Forretningsstrategi, Kommunikasjon og Markedsføring. Han er sertifisert i Advanced Computer Security fra Stanford University og Cyber Forensics and Counterterrorism fra Harvard University. Han har også CISSP fra ISC2, Certified Data Privacy Solution Engineer fra ISACA, og CCSK (Certificate of Cloud Security Knowledge) fra CSA. I tillegg har han gjennomført NHH sitt styreprogram, som utgjør en relevant bakgrunn for dette kurset. Til daglig jobber han som CISO for et selskap med lokasjoner på 24 steder over hele verden. Selskapet må både sikre trygg drift og utvikle programvare og tjenester som må være i drift 24/7. [-]
Les mer
Oslo Bergen Og 1 annet sted 3 dager 21 900 kr
04 Dec
04 Dec
18 Dec
TOGAF® EA Training Practitioner [+]
TOGAF® EA Training Practitioner [-]
Les mer
2 dager 17 500 kr
Splunk Enterprise System Administration [+]
Splunk Enterprise System Administration [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Nettkurs 5 timer 549 kr
I dette kurset kommer seniorutvikler John Inge Muldal Erlandsen til å dekke Azures viktigste fundamentale konsepter og hjelpe deg på din vei mot skyen. Han kommer til å d... [+]
Dette grunnleggende kurset om Microsoft Azure gir deg en solid forståelse av fundamentale konsepter i Azure-skymiljøet. Kursholderen, seniorutvikler John Inge Muldal Erlandsen, vil veilede deg gjennom nøkkelkomponentene og mulighetene som Azure tilbyr. Microsoft Azure er en ledende skyplattform og konkurrerer direkte med Amazon Web Services (AWS). Azure inneholder et bredt spekter av enheter, funksjoner og tjenester som du kan bruke for å oppfylle ulike behov innen skytjenester. Dette kurset er spesielt rettet mot forberedelse til AZ-900-eksamen, som fører til Microsoft-sertifiseringen "Microsoft Certified Fundamentals". Målet med kurset er å gi deg tilstrekkelig kunnskap og forberedelse til å bestå denne eksamenen med suksess. Kurset vil dekke følgende emner: Kapittel 1: Introduksjon Kapittel 2: Tjenester Kapittel 3: Verktøy Kapittel 4: Sikkerhet Kapittel 5: Styring Kapittel 6: Administrasjon Kapittel 7: Avslutning   Varighet: 4 timer og 32 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Oslo Trondheim Og 2 andre steder 3 dager 17 900 kr
25 Nov
25 Nov
02 Dec
ITIL® 4 Foundation [+]
ITIL® 4 Foundation [-]
Les mer
Klasserom + nettkurs 2 semester 45 000 kr
Mange arbeidsgivere etterspør kunnskap om digital markedsføring. Lær deg å lage godt, engasjerende digitalt innhold brukerne dine vil ha. [+]
Etter kurset Digital markedsføring, skal du ha grunnleggende kunnskaper innen dataanalyse og kjenne til digitale mediers rolle innen markedsføring. Du skal beherske digital markedsføring, strategi og planlegging, samt jus og etikk innenfor samme tema. Du skal bli i stand til å analysere effekten av strategi og kampanjer. Du skal vite hvordan nettsidene optimaliseres, samt hvordan man etablerer og drifter digitale annonser. Du skal kunne lede digitale kampanjer og ha kunnskap om hvilken betydning en god digital strategi har innen digital markedsføring. Studiet er både praktisk og teoretisk rettet – med hovedvekt på å løse praktiske obligatoriske oppgaveløsning basert på teoretisk kunnskap. Studentene vil gjennom studieåret gjennomføre en rekke individuelle og gruppebaserte praktiske og teoretiske oppgaver knyttet til de forskjellige undertema. [-]
Les mer
Nettkurs 5 timer 549 kr
Dette kurset passer for deg som har tatt vårt viderekommende kurs i Excel, og som nå ønsker å ta et steg videre. I kurset kommer Espen Faugstad til å lære deg å bruke ava... [+]
Utvid din Excel-kunnskap til et ekspertnivå med "Excel: Ekspert", et dyptgående kurs ledet av Espen Faugstad hos Utdannet.no. Dette kurset er ideelt for de som allerede har en solid forståelse av Excel gjennom tidligere kurs og ønsker å utvikle avanserte ferdigheter for å håndtere komplekse dataanalyser og problemstillinger. Kurset vil dekke avanserte teknikker og funksjoner i Excel, inkludert ulike variasjoner av HVIS-funksjonen, FINN.RAD, FINN.KOLONNE, tekstbehandlingsfunksjoner som SØK og DELTEKST, samt dato- og tidsfunksjoner. Du vil også lære om avanserte oppslagsfunksjoner, matematiske formler og statistiske analyser ved hjelp av Excel. I tillegg til å lære om avanserte formler, vil kurset veilede deg gjennom bruk av matrisefunksjoner og feilsøking i Excel. Ved kursets slutt vil du ha en omfattende forståelse av Excel på et ekspertnivå, noe som gjør deg i stand til å utføre sofistikerte dataanalyser og rapporteringer.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Formelhåndtering Kapittel 3: HVIS Kapittel 4: GJØR.HVIS Kapittel 5: FINN Kapittel 6: Tekst Kapittel 7: Dato Kapittel 8: Oppslag Kapittel 9: Matematikk Kapittel 10: Statistikk Kapittel 11: Matrise Kapittel 12: Diverse Kapittel 13: Avslutning   Varighet: 4 timer   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
1 dag 12 500 kr
Google Cloud Fundamentals: Core Infrastructure [+]
Google Cloud Fundamentals: Core Infrastructure [-]
Les mer
Oslo 4 dager 22 500 kr
25 Nov
25 Nov
03 Feb
AZ-140: Configuring and Operating Microsoft Azure Virtual Desktop [+]
AZ-140: Configuring and Operating Microsoft Azure Virtual Desktop [-]
Les mer
Oslo Trondheim Og 1 annet sted 3 dager 23 500 kr
05 Feb
12 Mar
02 Apr
ISTQB Foundation v4.0 Certificate [+]
ISTQB Foundation v4.0 Certificate [-]
Les mer