Alle kategorier
Du har valgt: IT-kurs
Nullstill
Filter
Ferdig

-

Mer enn 100 treff i IT-kurs
 

Nettkurs 365 dager 2 995 kr
Excel for Selgere - elæringskurs [+]
Excel for Selgere - elæringskurs [-]
Les mer
Oslo Trondheim 2 dager 16 900 kr
27 Jan
17 Feb
24 Mar
Modern Application Architecture [+]
Modern Application Architecture [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Nettkurs 4 timer 549 kr
Dette kurset er laget for deg som vil lære å bruke Google Analytics 4, og få innsikt i hvordan kundene dine bruker nettstedet eller appen din. Kurset varer i 4 timer og 5... [+]
Ønsker du å mestre Google Analytics 4 for å få dybdeinnsikt i kundeadferden på nettstedet eller appen din? Da er kurset "Google Analytics 4: Komplett", ledet av Espen Faugstad, perfekt for deg. Dette kurset er designet for å gi deg en helhetlig forståelse av Google Analytics 4, slik at du kan jobbe profesjonelt med dette kraftige analyseverktøyet. Kurset starter med grunnleggende om hvordan Google Analytics 4 fungerer og veileder deg gjennom installasjonen på din nettside. Du vil lære å konfigurere Google Analytics for å maksimere dets potensial, administrere brukere, spore nettstedsøk, og mye mer. I tillegg gir kurset deg en detaljert gjennomgang av standardrapporter og utforskninger som er tilgjengelige i Google Analytics 4. Mot slutten av kurset vil du dykke inn i mer avanserte temaer som opprettelse og sporing av egendefinerte hendelser, konverteringssporing, og hvordan du kan utnytte innsikter fra brukerdata for å forbedre dine digitale strategier. Dette kurset er din vei til å bli en ekspert i Google Analytics 4.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Installer Kapittel 3: Konfigurer Kapittel 4: Rapporter Kapittel 5: Utforsk Kapittel 6: Hendelser Kapittel 7: Avansert Kapittel 8: Avslutning   Varighet: 4 timer og 48 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Nettkurs 5 timer 549 kr
I dette kurset kommer seniorutvikler John Inge Muldal Erlandsen til å dekke Azures viktigste fundamentale konsepter og hjelpe deg på din vei mot skyen. Han kommer til å d... [+]
Dette grunnleggende kurset om Microsoft Azure gir deg en solid forståelse av fundamentale konsepter i Azure-skymiljøet. Kursholderen, seniorutvikler John Inge Muldal Erlandsen, vil veilede deg gjennom nøkkelkomponentene og mulighetene som Azure tilbyr. Microsoft Azure er en ledende skyplattform og konkurrerer direkte med Amazon Web Services (AWS). Azure inneholder et bredt spekter av enheter, funksjoner og tjenester som du kan bruke for å oppfylle ulike behov innen skytjenester. Dette kurset er spesielt rettet mot forberedelse til AZ-900-eksamen, som fører til Microsoft-sertifiseringen "Microsoft Certified Fundamentals". Målet med kurset er å gi deg tilstrekkelig kunnskap og forberedelse til å bestå denne eksamenen med suksess. Kurset vil dekke følgende emner: Kapittel 1: Introduksjon Kapittel 2: Tjenester Kapittel 3: Verktøy Kapittel 4: Sikkerhet Kapittel 5: Styring Kapittel 6: Administrasjon Kapittel 7: Avslutning   Varighet: 4 timer og 32 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Nettkurs 5 timer 549 kr
I dette kurset lærer du å annonsere med Google Ads slik at du blir synlig i det øyeblikket kunden søker etter ditt produkt eller tjeneste. Vi lærer deg å opprette og konf... [+]
Bli en ekspert i online annonsering med Google Ads gjennom dette dyptgående kurset ledet av Espen Faugstad, gründer av Utdannet.no og en veteran med over 10 års erfaring i digital markedsføring. Dette kurset er skreddersydd for alle, fra de som aldri har brukt Google Ads før, til de som har erfaring men ønsker å heve sin kompetanse til ekspertnivå. Kurset starter med grunnleggende om hvordan du oppretter og konfigurerer en Google Ads-konto. Du vil lære å installere Google Ads-taggen og konverteringssporing, utføre målgruppe- og søkeordsanalyse, og forstå hvordan Google Ads-auksjonen fungerer. Kurset dekker også hvordan du oppretter og optimaliserer ulike typer annonser, inkludert tekst-, bilde-, video- og remarketingannonser. Med en praktisk tilnærming vil kurset guide deg gjennom prosessen med å sette opp effektive kampanjer, forstå auksjonssystemet, og bruke analyseverktøy for å forbedre dine resultater. Ved kursets slutt vil du ha tilegnet deg den kunnskapen du trenger for å mestre Google Ads og drive effektiv annonsering på vegne av deg selv eller dine klienter.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Målgruppe Kapittel 3: Søkeord Kapittel 4: Auksjon Kapittel 5: Tekstannonser Kapittel 6: Bildeannonser Kapittel 7: Videoannonser Kapittel 8: Remarketing Kapittel 9: Analyse Kapittel 10: Avslutning   Varighet: 5 timer og 12 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
3 dager 8 200 kr
Vil du lære å lage visittkort, annonser, brosjyrer og plakater i InDesign? Enten du jobber i en markedsavdeling, grafisk bedrift, avis eller magasin, er InDesign det pr..... [+]
Vil du lære å lage visittkort, annonser, brosjyrer og plakater i InDesign? Enten du jobber i en markedsavdeling, grafisk bedrift, avis eller magasin, er dette det profesjonelle programmet du bruker til jobben.  Arbeider du med markedsføring og layout, vil du ha stor nytte av å kunne sette sammen tekst og bilder selv. Du slipper å sette ut arbeidet,  får større kontroll på layouten og mer ut av markedsbudsjettet. Du velger dette kurset for å lære alt du trenger for å komme igang med programmet InDesign. Hvem passer kurset for? Kurset passer for deg som har liten eller ingen erfaring med å jobbe i InDesign. InDesign er bransjestandarden for å lage annonser, brosjyrer, magasiner, plakater, DM, rapporter og bøker. Uansett hva du skal bruke programme til, så passer dette kurset for deg! Dette lærer du: Bli kjent med menyer og verktøy Effektiv jobbing med tekst- og sidemaler Grunnleggende typografi Importere og tilpasse bilder og tekst Plassere bilder med tekst rundt Lage egne farger Bruk av effekter Kontroll av dokumenter og eksport til pdf https://igm.no/indesign-grunnkurs/ [-]
Les mer
Oslo 5 dager 46 000 kr
06 Jan
06 Jan
10 Mar
SFWIPF: Fundamentals of Cisco Firewall Threat Defense and Intrusion Prevention [+]
SFWIPF: Fundamentals of Cisco Firewall Threat Defense and Intrusion Prevention [-]
Les mer
Nettstudie 1 semester 4 980 kr
På forespørsel
Nettstrukturer: LAN, VLAN, VPN, trådløst nett, virtuelle nett Nettutstyr: Svitsj, ruter, brannmur, basestasjon. Nettfunksjoner: Ruting, filtrering, tunnelering, port forw... [+]
Studieår: 2013-2014   Gjennomføring: Høst Antall studiepoeng: 5.0 Forutsetninger: Kunnskaper om grunnleggende datakommunikasjon, tilsvarende faget "Datakommunikasjon". Innleveringer: 8 av 12 øvinger må være godkjent for å få gå opp til eksamen. Personlig veileder: ja Vurderingsform: Skriftlig eksamen, individuell, 3 timer.  Ansvarlig: Olav Skundberg Eksamensdato: 16.12.13         Læremål: KUNNSKAPER:Kandidaten:- kan redegjøre for struktur og virkemåte for ulike typer lokale nettverk og nettverkskomponenter- kan redegjøre for kryptering og andre sikkerhetsmekanismer i kablet og trådløst nettverk- kan redegjøre for oversetting mellom interne og offentlige IP-adresser- kan redegjøre for nettverksadministrasjon og fjernpålogging på nettverksenheter FERDIGHETER:Kandidaten:- kan analysere pakketrafikk- kan konfigurere nettverk med virtuelle datamaskiner- kan administrere virtuelt nettverk og sette opp interne lukkede nettverk.- kan filtrere nettverkstrafikk i brannmur basert port, adresser og eksisterende forbindelser GENERELL KOMPETANSEKandidaten:- er bevisst på helhetlig samspill mellom de ulike teknologiene Innhold:Nettstrukturer: LAN, VLAN, VPN, trådløst nett, virtuelle nett Nettutstyr: Svitsj, ruter, brannmur, basestasjon. Nettfunksjoner: Ruting, filtrering, tunnelering, port forwarding, NAT, DHCP, IPv6. Nettadministrasjon: Fjernpålogging og trafikkanalyse.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Dette faget går: Høst 2013    Fag Nettverksteknologi 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Oslo 3 dager 20 000 kr
20 Jan
20 Jan
17 Mar
AZ-700: Designing and Implementing Microsoft Azure Networking Solutions [+]
AZ-700: Designing and Implementing Microsoft Azure Networking Solutions [-]
Les mer
Bedriftsintern 2 dager 5 200 kr
Office 365 inneholder mange gode verktøy som kan gjøre arbeidsdagen din enklere, men det kan være vanskelig å holde oversikten over alle mulighetene verktøyene gir deg. D... [+]
Kurset gir en grunnleggende innføring i de viktigste delene av Office 365. Deltakerne får god kjennskap til skylagring, deling av filer, OneNote og samhandling via SharePoint og Teams.   Innhold Grunnleggende innføring i hva Office 365 er OneDrive og lagring i sky Synkronisering av filer mellom pc og sky Deling av filer og dokumenter OneNote og deling/synkronisering av notatblokker Biblioteker, lister og samhandling i SharePoint Teams Kurset egner seg også godt som bedriftsinternt kurs.   [-]
Les mer
Oslo 5 dager 30 000 kr
20 Jan
20 Jan
24 Feb
AI-102: Designing and Implementing a Microsoft Azure AI Solution [+]
AI-102: Designing and Implementing a Microsoft Azure AI Solution [-]
Les mer
Virtuelt klasserom 5 dager 38 000 kr
(ISC)² and the Cloud Security Alliance (CSA) developed the Certified Cloud Security Professional (CCSP) credential to ensure that cloud security professionals have the re... [+]
COURSE OVERVIEW A CCSP applies information security expertise to a cloud computing environment and demonstrates competence in cloud security architecture, design, operations, and service orchestration. This professional competence is measured against a globally recognized body of knowledge. The CCSP is a standalone credential that complements and builds upon existing credentials and educational programs, including (ISC)²’s Certified Information Systems Security Professional (CISSP) and CSA’s Certificate of Cloud Security Knowledge (CCSK). As an (ISC)2 Official Training Provider, we use courseware developed by (ISC)² –creator of the CCSP CBK –to ensure your training is relevant and up-to-date. Our instructors are verified security experts who hold the CCSP and have completed intensive training to teach (ISC)² content. Please Note: An exam voucher is included with this course   TARGET AUDIENCE Experienced cybersecurity and IT/ICT professionals who are involved in transitioning to and maintaining cloud-basedsolutions and services. Roles include:• Cloud Architect• Chief Information Security Officer (CISO)• Chief Information Officer (CIO)• Chief Technology Officer (CTO)• Engineer/Developer/Manager• DevOps• Enterprise Architect• IT Contract Negotiator• IT Risk and Compliance Manager• Security Administrator• Security Analyst• Security Architect• Security Consultant• Security Engineer• Security Manager• Systems Architect• Systems Engineer• SecOps   COURSE OBJECTIVES After completing this course you should be able to:   Describe the physical and virtual components of and identify the principle technologies of cloud based systems Define the roles and responsibilities of customers, providers, partners, brokers and the various technical professionals that support cloud computing environments Identify and explain the five characteristics required to satisfy the NIST definition of cloud computing Differentiate between various as a Service delivery models and frameworks that are incorporated into the cloud computing reference architecture Discuss strategies for safeguarding data, classifying data, ensuring privacy, assuring compliance with regulatory agencies and working with authorities during legal investigations Contrast between forensic analysis in corporate data center and cloud computing environments Evaluate and implement the security controls necessary to ensure confidentiality, integrity and availability in cloud computing Identify and explain the six phases of the data lifecycle Explain strategies for protecting data at rest and data in motion Describe the role of encryption in protecting data and specific strategies for key management Compare a variety of cloud-based business continuity / disaster recovery strategies and select an appropriate solution to specific business requirements Contrast security aspects of Software Development Lifecycle (SDLC) in standard data center and cloud computing environments Describe how federated identity and access management solutions mitigate risks in cloud computing systems Conduct gap analysis between baseline and industry-standard best practices Develop Service Level Agreements (SLAs) for cloud computing environments Conduct risk assessments of existing and proposed cloud-based environments State the professional and ethical standards of (ISC)² and the Certified Cloud Security Professional COURSE CONTENT   Domain 1. Cloud Concepts, Architecture and Design Domain 2. Cloud Data Security Domain 3. Cloud Platform & Infrastructure Security Domain 4. Cloud Application Security Domain 5. Cloud Security Operations Domain 6. Legal, Risk and Compliance TEST CERTIFICATION Recommended as preparation for the following exam: (ISC)² - Certified Cloud Security Professional  Gaining this accreditation is not just about passing the exam, there are a number of other criterias that need to be met including 5  years of cumulative, paid work experience in  information technology, of which 3 years must be in information security and 1 year in 1 or more of the 6 domains of the CCSP CBK. Earning CSA’s CCSK certificate can be substituted for 1 year of experience in 1 or more of the 6 domains of the CCSP CBK. Earning (ISC)²’s CISSP credential can be substituted for the entire CCSP experience requirement. Full details can be found at https://www.isc2.org/Certifications/CCSP Those without the required experience can take the exam to become an Associate of (ISC)²  . The Associate of (ISC)² will then have 6 years to earn the 5 years required experience.   [-]
Les mer
3 timer 4 950 kr
Vurderer dere å innføre SharePoint? Har dere SharePoint, men benytter dere ikke av alle mulighetene? Om det er SharePoint Online eller SharePoint Server, er mulighetene..... [+]
Vurderer dere å innføre SharePoint? Har dere SharePoint, men benytter dere ikke av alle mulighetene? Om det er SharePoint Online eller SharePoint Server, er mulighetene mange. I løpet av denne seansen viser vi smarte muligheter en organisasjon kan benytte, og en idé om hva som skal til for å ta funksjonaliteten i bruk. Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Hva er SharePoint? Prosjektområder Dokumenthåndtering og arkivering Forretningsprosess med arbeidsflyt Dashboards med Visio og Excel Services Koble til eksterne data (BCS) Branding av SharePoint-utseende Publisering på kryss av områdesamlinger Søkeportaler og søkeløsninger   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
25 Nov
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer