IT-kurs
Hordaland
Du har valgt: Sveio
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Sveio ) i IT-kurs
 

Virtuelt klasserom 2 timer 1 990 kr
20 Nov
10 Jan
Excel – Du trodde du kunne det? [+]
Excel – Du trodde du kunne det? [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excel for Selgere - elæringskurs [+]
Excel for Selgere - elæringskurs [-]
Les mer
Hele landet Sentrum 2 dager 9 800 kr
05 Dec
17 Mar
Har du jobbet litt med Adobe Photoshop, men ønsker å lære mer på et grunnleggende nivå? Da er dette grunnkurset perfekt for deg! [+]
Ønsker du en kjapp og smertefri introduksjon i verdens mest populære bildebehandlingsprogram? Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1    Innføring Fargemodellene RGB og CMYK Beskjæring av bildet til trykk eller skjerm Utskriftsoppløsning og kameraoppløsning Forstå hvordan oppløsning fungerer Hva er de vanligste filformatene å jobbe i   Arbeidsmiljø Menyer og paletter. Hva inneholder disse, og hvordan får du fram det du ønsker? Tilpasse arbeidsmiljøet. Flytte på paletter og lagre egne oppsett tilpasset dine behov Navigering og zoom. Fokuser på det du jobber med, se helheten, og gjør dette raskt og effektivt Adobe Bridge. Introduksjon til programmet som organiserer og forhåndsviser filer og gjør det enklere for deg å jobbe Nytt dokument. Hvordan lage og tilpasse nye dokumenter med marger, spalter, sidevisning med mer?   Retusjering Bli kjent med retusjeringsverktøyene Se på hvilke muligheter du har i nyere utgave av Photoshop Fjerne uønskede elementer i bilder   Lag Bli kjent med lagpaletten Opprette, slette og organisere lag Transformering av lag Lagstiler og justeringslag   Markeringer Lær å bruke de forskjellige markeringsverktøyene Gjøre endringer på markerte områder Kombiner markeringsverktøy for å kun få tak i det du ønsker Opprett lag på bakgrunn av markeringer   Dag 2   Bildejusteringer Justere kontrast og tonalitet i et bilde Jobbe med å gjøre bilde lysere og mørkere Justere farger i et bilde Bytte ut én farge med en annen   Kombiner ulike verktøy for å utnytte mulighetene i Photoshop Jobbe med et bilde med ulike verktøy Markering og bildejustering Markering og fjerning av bakgrunnselementer Bruke smartere markedsverktøy   Lagring Lær om de ulike filformatene vi bør kjenne til Lagring til web og komprimering av bilder Lagring til trykk   Jobbe med flere bilder Klippe ut fra et bilde og lime inn i et annet Tekstverktøyet og tekstpalettene Tegneverktøy   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
Sentrum Hele landet 2 dager 12 490 kr
17 Dec
27 Feb
23 Apr
Excel Ekspert kurs for deg som ønsker en omfattende fordypning i Excel knyttet til formler og funksjoner, men som ikke har tid til å sette deg inn i dette på egenhånd... [+]
Excel Ekspert kurs for deg som ønsker en omfattende fordypning i Excel knyttet til formler og funksjoner, men som ikke har tid til å sette deg inn i dette på egenhånd. Vil du lære mer om håndtering av datagrunnlag og rapportering på grunnlag fra flere kilder, samt bygging av dynamiske modeller? Da er ”Excel Ekspert” kurset for deg! Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1   Funksjoner i Excel Utarbeidelse av dynamiske modeller ved bruk av navn og funksjoner. Funksjoner. Få oversikt over flere avanserte funksjoner samt se kraften av å bruke sammensatte funksjoner Navn. Bruk navn for å forenkle og tydeliggjøre formler og funksjoner. Lag dynamiske etiketter til diagrammer Matriseregning. Få en innføring i hvordan du kan jobbe med matrisefunksjonalitet i Excel.   Alternativknapper og kombinasjonsbokser Gjør modellene dine mer interaktive ved bruk av kontroller   Dag 2   Klargjøre data for beregninger ved bruk av PowerQuery Hva er PowerQuery? Lese inn data til PowerQuery fra ulike kilder Eksempel: tilføye og slå sammen Snu krysstabell Kobling til tekstfil med problemer Manglende struktur i kolonner. Lær hvordan du kan gjengi informasjon i regnearket slik at grunnlaget kan brukes til rapportering. Duplikater. Lær forskjellige måter å kvitte seg med duplikater på. Splitte informasjon. Lær forskjellige måter for å skille data i kolonner.   Beregninger ved bruk av Pivot Eksempel: prosentvis fordeling ”i år mot i fjor”. Pivotkonsolidering og datakonsolidering.   Makroer Innspilling av makro. Hvordan lage makroer for å automatisere rutinearbeid? Redigering av makroer. Lær hvordan makroer kan gjøres mer dynamiske, kombinert med navn og bruk av meldingsbokser og ”hvis” setninger. Demonstrere viktige VBA metoder 4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti     [-]
Les mer
Oslo Trondheim 3 dager 27 900 kr
11 Dec
11 Dec
Advanced Architecting on AWS [+]
Advanced Architecting on AWS [-]
Les mer
Virtuelt klasserom Majorstuen 3 timer 1 750 kr
10 Dec
Deltakerne lærer å håndtere lister på en rask og effektiv måte og vi ser også på noen av fordelene ved å gjøre en liste om til en tabell og når en ikke bør gjøre det. Ved... [+]
Kursinnhold Flash Fill Diagrammer Sparkline grafikk Hurtiganalyse Sortering og filtrering Avansert filter Delsammendrag Tabeller Målgruppe Deg som Jobber med lister i Excel Ønsker å effektivisere databehandlingen i Excel Vil ha en kjapp gjennomgang av disse elementene. Har grunnleggende kunnskaper i Excel og ønsker å lære mer. Forkunnskaper Har laget regneark Har kunnskaper tilsvarende «Ta kontroll over regnearket» Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Generell nettverkssikkerhet. Hvordan planlegge, organisere og sette sikkerhet i små og store nettverk. Brannmurer, VPN, IDS/IPS. Sikkerhet rundt epost, trådløse nett og r... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Faget «Datakommunikasjon» eller tilsvarende grunnleggende fag. (TCP/IP forutsettes kjent). Faget «Nettverksteknologi» Innleveringer: Øvinger: 8 av 12 må være godkjent. Øvingene må dekke en bred del av pensum. Vurderingsform: Skriftlig, individuell, 3 timer, Ansvarlig: Helge Hafting Eksamensdato: 04.12.13 / 07.05.14         Læremål: KUNNSKAPER:Kandidaten:- kan forklare en del protokollbaserte farer/angrep i kablede og trådløse nett- kan gjøre rede for mottiltak mot angrepene over- kan gjøre rede for andre farer og mottiltak, som fysiske sikringstiltak og «social engineering»- kan gjøre rede for og planlegge bruk av vanlige sikringstiltak som IDS, IPS, VPN og proxyer FERDIGHETER:Kandidaten kan:- sette i drift et VPN- installere brannmur- Observere nettverkstrafikk med pakkesniffer GENERELL KOMPETANSE:Kandidaten:- kan granske sikkerheten i et nettverk, og velge passende tiltak.Innhold:Generell nettverkssikkerhet. Hvordan planlegge, organisere og sette sikkerhet i små og store nettverk. Brannmurer, VPN, IDS/IPS. Sikkerhet rundt epost, trådløse nett og rutere. En del vanlige angrep, og mottiltak.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Nettverkssikkerhet 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Klasserom + nettkurs Sentrum Hele landet 1 dag 4 490 kr
28 Nov
18 Dec
27 Jan
Dette kurset passer fro deg som ikke har jobbet med Word tidligere, men ønsker å komme i gang! [+]
Har du lite eller ingen erfaring med Word og ønsker en innføring i programmet? På dette kurset lærer du hvordan du kan sette opp, skrive/redigere og formatere dokumenter på en fornuftig måte i Word. Du jobber i ditt eget tempo via et e-læringsprogram, med instruktør tilstede i rommet som hjelper deg om du står fast.   Kursinnhold:   Bli kjent med Word Oppstart Åpning Visninger Navigering Nye dokumenter Innskriving Lagring og lukking Alternativer Egenskaper Hjelpemuligheter   Redigering Merking Sletting og erstatting Symboler og spesialtegn Angremuligheter Sammenslåing og deling av avsnitt Flytting og kopiering Søking og erstatting   Formatering Hva er formatering? Tegnformatering Avstand mellom tegn Avsnittsformatering Avstand mellom linjer og avsnitt Justering Innrykk Punktlister og nummererte lister Tabulatorer Kantlinjer og skyggelegging Kopiering av format Stiler   Sideformatering Inndelinger Marger Papirretning og størrelse Spalter Topptekst og bunntekst Sidetall og dokumentinformasjon Forsider og tomme sider Hardt sideskift Dokumenttema   Språkverktøy Autokorrektur Byggeblokker Stave- og grammatikkontroll Synonymordbok Orddeling Ordtelling Dato og klokkeslett   Utskrift Utskriftsformat Forhåndsvisning Utskrift Konvolutter og etiketter   Tabeller Utforming av tabeller Merking Innsetting og sletting Flytting og kopiering Tabellstiler Radhøyde og kolonnebredde Justering Kantlinjer og skyggefarge   Bilder og objekter Bruk av bilder Utklipp og bildefiler Tekstbryting og plassering Formatering av bilder Figurer Tekstbokser Arbeid med objekter WordArt SmartArt Diagram   Fletting Utskriftsfletting Hoveddokument Datakilde Innsetting av flettefelt Fletting Fletteveiviseren   Internett og distribusjon Websider Hyperkoblinger Elektronisk post PDF- og XPS-format Dokumentinspeksjon Endelig versjon [-]
Les mer
Virtuelt klasserom 4 dager 17 200 kr
06 Jan
17 Feb
Kurset passer for deg som ønsker å komme igang med Java-programmering, forstå grunnleggende programmeringskonsepter, lage enkle programmer og forstå Java-kode skrevet av ... [+]
Dette er et 4-dagers introduksjonskurs i Java-programmering. Kurset passer for deg som ønsker å komme igang med Java-programmering, forstå grunnleggende programmeringskonsepter, lage enkle programmer og forstå Java-kode skrevet av andre. Hvis du ikke har tatt noen Java-kurs tidligere er dette stedet å begynne. Vi bruker Eclipse IDE med siste versjon av Java (Standard Edition) til kurset.   Målsetting Etter gjennomført kurs vil deltakerne kunne skrive enkle programmer i Java og kjenne til de grunnleggende komponentene og prinsippene Java bygger på.   Kursinnhold Hva er Java? Kort historikk og anvendelseområder frem til idag. Grunnleggende konsepter for objektorientert programmering: Abstraksjon, innkapsling, arv og polymorfi Variabler og datatyper Klasser, objekter og metoder Public, Private og Protected Constructors, getters and setters Pakker og biblioteker Behandling av tall og tekst Betingelser (if - else, switch) Progammeringsløkker (for, while, do ... while, forEach) Lesing fra og skriving til tekstfiler Java Collections (Set, List, Map, ArrayList, TreeMap etc.) Lesing fra og skriving til databaser med JDBC Kompilering og eksekvering av Java-programmer Hente inn avhengigheter fra internett ved hjelp av Maven Nytt i Java: Stream api med filter, map, reduce, forEach og pil-funksjoner, samt Collections Literals.   Gjennomføring Kurset gjennomføres med en kombinasjon av online læringsmidler, gjennomgang av temaer og problemstillinger og praktiske øvelser. Det er ingen avsluttende eksamen, men det er øvingsoppgaver til hvert av temaene som gjennomgås. onsdag: Undervisning: Fra kl.10:00-14:00 + oppgaver som «hjemmelekse»torsdag: Undervisning: Fra kl.10:00-14:00 + oppgaver som «hjemmelekse»fredag: Undervisning: Fra kl.10:00-14:00 + oppgaver som «hjemmelekse»mandag: Gjennomgang og oppsummering Fra kl.10:00-14:00   [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Virtualisering med VMware. [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: Øvinger: 8 av 12 må være godkjent. Personlig veileder: ja Vurderingsform: Praktisk hjemmeeksamen over 2 dager. Fra 09:00 til 15:00 dagen etter. Rapport leveres i itslearning. Ansvarlig: Stein Meisingseth Eksamensdato: 02.12.13 / 05.05.14         Læremål: Etter å ha gjennomført emnet Virtuelle Tjenere skal studenten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- ser fordeler, økonomiske og praktiske, ved å ta i bruk virtualiseringsteknologien til VMware- kjenner sentrale temaer innen drift av vSphere Infrastructure- forstår hvordan virtualisering er bygd opp FERDIGHETER:Kandidaten:- kan installere og konfigurere VMware vSphere- kan sette opp et cluster i vSphere vCenter- vise ut i fra rapporter gitt i vSphere Client om det trengs mer ressurser i opprettet cluster for dets kjørende virtuelle maskiner- forstår funksjonene vMotion, High Availability (HA) og Distributed Resource Scheduler (DRS)- kan automatisere enkle oppgaver ved bruk av PowerCLI script- kan utføre og- gjenopprette backup av virtuelle maskiner- kjenner til hvordan roller kan tildeles brukere GENERELL KOMPETANSE:Kandidaten:- har kompetanse til å besvare teoretiske problemstillinger innen virtualisering- har kompetanse til selvstendig både å ta i bruk sine kunnskaper og ferdigheter innen emnets tema i en driftssituasjon Innhold:Virtualisering med VMware.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Virtuelle Tjenere 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg   [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Introduksjon til webpublisering, HTML og XHTML, CSS, prinsipper for webdesign, DOM og JavaScript, XML (SVG og RSS), multimedia på web (grafikk, bilder, lyd og video), int... [+]
Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: Større og mindre øvinger tilsvarende 8 øvinger, hvor 6 må være godkjent før endelig karakter settes. Personlig veileder: ja Vurderingsform: Karakteren i faget settes på grunnlag av to eksamensdeler - et prosjekt (60 %) og en netteksamen (40 %). Prosjektet går over 5 uker og gjennomføres som gruppearbeid. I vurderingen av prosjektet teller prosess, dokumentasjon og produkt. Individuelle karakterer kan gis ved manglende deltagelse. Netteksamen varer 1 time og består av både flervalgs- og fritekstspørsmål. Både prosjekt, netteksamen og obligatoriske øvinger må være bestått for å få karakter i faget. Klageadgang gjelder for hver enkelt eksamensdel. Ansvarlig: Atle Nes Eksamensdato: 11.12.13 / 14.05.14         Læremål: Etter å ha gjennomført emnet Webutvikling 1 skal studenten ha følgende læringsutbytte: KUNNSKAPER:Kandidaten:- forstår klient-tjener-arkitektur i konteksten nettleser og webtjener.- kjenner til forskjellen på statiske og dynamiske websider.- kjenner til HTTP-protokollen og kryptert kommunikasjon med HTTPS.- forstår oppbygningen til en URL, domenenavn og porter.- vet forskjellen på absolutt og relativ adressering.- kjenner til virkemåten til søkemotorer.- forstår viktigheten av å følge web-standarder. FERDIGHETER:Kandidaten:- kan utvikle et funksjonelt nettsted ved bruk en enkel testeditor og HTML eller XHTML.- kan laste opp nettstedet til webtjener med SFTP.- kan endre utseendet på nettstedet med intern eller ekstern CSS.- kan bruke DOM og JavaScript til å lage dynamiske nettsider.- kan legge til multimedia (grafikk, bilder, lyd, video) på nettstedet.- kan integrere eksterne tjenester på nettstedet. GENERELL KOMPETANSE:Kandidaten:- får en grunnleggende forståelse av hvordan et moderne nettsted er oppbygd. Innhold:Introduksjon til webpublisering, HTML og XHTML, CSS, prinsipper for webdesign, DOM og JavaScript, XML (SVG og RSS), multimedia på web (grafikk, bilder, lyd og video), integrasjon av eksterne tjenester.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Webutvikling 1 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Oslo 1 dag 9 500 kr
17 Dec
17 Dec
24 Jan
AZ-900: Microsoft Azure Fundamentals [+]
AZ-900: Microsoft Azure Fundamentals [-]
Les mer
5 000 kr
5G Security [+]
5G Security [-]
Les mer