IT-kurs
Vestfold
Du har valgt: Tønsberg
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Tønsberg ) i IT-kurs
 

Nettkurs 365 dager 2 995 kr
Excel for Selgere - elæringskurs [+]
Excel for Selgere - elæringskurs [-]
Les mer
Hele landet Sentrum 2 dager 9 800 kr
05 Dec
17 Mar
Har du jobbet litt med Adobe Photoshop, men ønsker å lære mer på et grunnleggende nivå? Da er dette grunnkurset perfekt for deg! [+]
Ønsker du en kjapp og smertefri introduksjon i verdens mest populære bildebehandlingsprogram? Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1    Innføring Fargemodellene RGB og CMYK Beskjæring av bildet til trykk eller skjerm Utskriftsoppløsning og kameraoppløsning Forstå hvordan oppløsning fungerer Hva er de vanligste filformatene å jobbe i   Arbeidsmiljø Menyer og paletter. Hva inneholder disse, og hvordan får du fram det du ønsker? Tilpasse arbeidsmiljøet. Flytte på paletter og lagre egne oppsett tilpasset dine behov Navigering og zoom. Fokuser på det du jobber med, se helheten, og gjør dette raskt og effektivt Adobe Bridge. Introduksjon til programmet som organiserer og forhåndsviser filer og gjør det enklere for deg å jobbe Nytt dokument. Hvordan lage og tilpasse nye dokumenter med marger, spalter, sidevisning med mer?   Retusjering Bli kjent med retusjeringsverktøyene Se på hvilke muligheter du har i nyere utgave av Photoshop Fjerne uønskede elementer i bilder   Lag Bli kjent med lagpaletten Opprette, slette og organisere lag Transformering av lag Lagstiler og justeringslag   Markeringer Lær å bruke de forskjellige markeringsverktøyene Gjøre endringer på markerte områder Kombiner markeringsverktøy for å kun få tak i det du ønsker Opprett lag på bakgrunn av markeringer   Dag 2   Bildejusteringer Justere kontrast og tonalitet i et bilde Jobbe med å gjøre bilde lysere og mørkere Justere farger i et bilde Bytte ut én farge med en annen   Kombiner ulike verktøy for å utnytte mulighetene i Photoshop Jobbe med et bilde med ulike verktøy Markering og bildejustering Markering og fjerning av bakgrunnselementer Bruke smartere markedsverktøy   Lagring Lær om de ulike filformatene vi bør kjenne til Lagring til web og komprimering av bilder Lagring til trykk   Jobbe med flere bilder Klippe ut fra et bilde og lime inn i et annet Tekstverktøyet og tekstpalettene Tegneverktøy   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
Sentrum Hele landet 2 dager 12 490 kr
17 Dec
27 Feb
23 Apr
Excel Ekspert kurs for deg som ønsker en omfattende fordypning i Excel knyttet til formler og funksjoner, men som ikke har tid til å sette deg inn i dette på egenhånd... [+]
Excel Ekspert kurs for deg som ønsker en omfattende fordypning i Excel knyttet til formler og funksjoner, men som ikke har tid til å sette deg inn i dette på egenhånd. Vil du lære mer om håndtering av datagrunnlag og rapportering på grunnlag fra flere kilder, samt bygging av dynamiske modeller? Da er ”Excel Ekspert” kurset for deg! Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1   Funksjoner i Excel Utarbeidelse av dynamiske modeller ved bruk av navn og funksjoner. Funksjoner. Få oversikt over flere avanserte funksjoner samt se kraften av å bruke sammensatte funksjoner Navn. Bruk navn for å forenkle og tydeliggjøre formler og funksjoner. Lag dynamiske etiketter til diagrammer Matriseregning. Få en innføring i hvordan du kan jobbe med matrisefunksjonalitet i Excel.   Alternativknapper og kombinasjonsbokser Gjør modellene dine mer interaktive ved bruk av kontroller   Dag 2   Klargjøre data for beregninger ved bruk av PowerQuery Hva er PowerQuery? Lese inn data til PowerQuery fra ulike kilder Eksempel: tilføye og slå sammen Snu krysstabell Kobling til tekstfil med problemer Manglende struktur i kolonner. Lær hvordan du kan gjengi informasjon i regnearket slik at grunnlaget kan brukes til rapportering. Duplikater. Lær forskjellige måter å kvitte seg med duplikater på. Splitte informasjon. Lær forskjellige måter for å skille data i kolonner.   Beregninger ved bruk av Pivot Eksempel: prosentvis fordeling ”i år mot i fjor”. Pivotkonsolidering og datakonsolidering.   Makroer Innspilling av makro. Hvordan lage makroer for å automatisere rutinearbeid? Redigering av makroer. Lær hvordan makroer kan gjøres mer dynamiske, kombinert med navn og bruk av meldingsbokser og ”hvis” setninger. Demonstrere viktige VBA metoder 4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti     [-]
Les mer
Virtuelt klasserom 2 timer 1 990 kr
20 Nov
10 Jan
Excel – Du trodde du kunne det? [+]
Excel – Du trodde du kunne det? [-]
Les mer
Nettkurs 3 timer 3 120 kr
I de fleste prosjekter skal bygget/byggene plasseres geografisk i henhold til et koordinatsystem. [+]
NTI leverer opplæring for å forenkle og effektivisere din arbeidshverdag Årlig utdanner over 8.000 personer seg i ulike CAD- og BIM-løsninger hos NTI.Vi har mer enn 70 forskjellige kurs innen fagområdene CAD/BIM-, Industri, Prosess, Plant og Infrastruktur- og dokumenthåndtering, og i snitt har våre 100 konsulenter og instruktører mer enn 10 års erfaring med opplæring og konsulenttjenester. Hvordan få riktig oppsett av koordinater i prosjekt? Dette er et tema NTI merker stor pågang rundt til support, og henvendelsene kommer fra disipliner som byggteknikk, VVS og elektro i tillegg til arkitekt. Det er ofte arkitekten som setter opp koordinatene i Revit. Hvis utgangspunktet er feil, påvirkes dette i alle andre disipliner også. Spesielt der det er krav til at utvekslingsformatet er IFC. På dette online-kurset vil du lære: Forskjellen mellom de ulike koordinatsystemene Hva er et lokalt nullpunkt Sette opp reelle koordinater (Survey) «Best Practice» i oppsett av koordinater fra start Samhandling ved utveksling av filer og koordinater Behandle flere koordinatsystemer i samme prosjekt IFC export/import i forhold til delte koordinater Det kan gå noe tid mellom hver gang du setter opp koordinater, og det er lett å glemme prosessen. Etter gjennomført kurs, får du en «step by step» dokumentasjon, som kan benyttes som oppslagsverk senere.  Kurs på dine betingelser!Ditt firma har kanskje investert i ny CAD-programvare, oppgradert til ny versjon, oppdatert til ny programvare eller dere trenger rett og slett oppfriskning. Da er det på tide å investere i kompetanse for dine ansatte! Kontakt vår kurskoordinator Wenche, telefon 21 40 27 89 eller epost. [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Oslo 5 dager 40 000 kr
10 Feb
10 Feb
CEH: Certified Ethical Hacker v13 [+]
CEH: Certified Ethical Hacker v13 [-]
Les mer
Oslo Bergen Og 1 annet sted 3 dager 23 500 kr
20 Nov
05 Feb
12 Mar
ISTQB Foundation v4.0 Certificate [+]
ISTQB Foundation v4.0 Certificate [-]
Les mer
Nettkurs 3 timer 549 kr
Ta vårt videokurs i Acrobat Pro fra din datamaskin. Lær så mye du vil, når du vil. Du får gratis hjelp. Du får kursbevis. Du får tilgang til alle kurs. Meld deg på her! [+]
Acrobat Pro DC er et kraftig verktøy som gir deg muligheten til å opprette, redigere og signere PDF-dokumenter. PDF, som står for Portable Document Format, er en standard for å presentere og dele dokumenter uavhengig av programvare, maskinvare og operativsystem. Med Acrobat Pro DC kan du arbeide med tekst, bilder, videoer, koblinger, knapper og skjemaer i PDF-format. PDF-formatet ble introdusert i 1991 av Dr. John Warnock, medgrunnleggeren av Adobe, med målet om å gjøre det enkelt for alle å samle, dele og skrive ut dokumenter fra hvilket som helst program. I dag foretrekkes PDF-formatet av bedrifter over hele verden. I dette kurset, ledet av Espen Faugstad hos Utdannet.no, vil du lære å utnytte Adobe Acrobat Pro DC til fulle. Kurset vil ta deg gjennom programmets organisasjon, verktøy og paneler. Du vil lære å opprette, søke, redigere og organisere PDF-dokumenter. I tillegg vil du bli kjent med elektronisk signering, passordbeskyttelse, skjemaoppretting og kryptering av PDF-dokumenter.   Innhold: Kapittel 1: Organisering og Verktøy Kapittel 2: Opprette PDF Kapittel 3: Søke og Erstatte Kapittel 4: Redigere PDF Kapittel 5: Organisere Sider Kapittel 6: Kommentarer Kapittel 7: Skjema og Signatur Kapittel 8: Beskyttelse og Kryptering Kapittel 9: Lagre PDF Kapittel 10: Avslutning   Varighet: 2 timer og 23 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer som strømmetjenester for musikk eller TV-serier, der kundene våre betaler en fast månedspris for tilgang til alle kursene vi har produsert. Plattformen har hatt betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling morsomt, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Nettstudie 11 800 kr
Med utgangspunkt i automasjon i bygg lærere du I denne utdanningen lærer du om grunnleggende programmering i HTML, Python, og JavaScript, mobilapp-utvikling, samt prosjek... [+]
Koding automasjon i bygg Denne fagskole utdanningens innhold tilsvarer 5 studiepoeng og utdanning er på nettet.  Maksimalt antall studieplasser er 25. Utdanningen er praktisk tilrettelagt, slik at du kan anvende teori og kunnskap i praksis. Du vil få mulighet til å jobbe med reelle og aktuelle problemstillinger, og du vil få tilbakemelding fra erfarne fagfolk. Læremateriellet består av video, podkaster, resyme av fagstoff, artikler, forskningsrapporter, foredrag, presentasjon av fagstoff, samt quizer og annet. Læremateriellet du får tilgang til er på en LMS som er under kontinuerlig utvikling og oppdatering. Du får ett års tilgang til læremateriell, etter at utdanningen er ferdig, på Learning Management System (LMS) I denne utdanningen lærer du om: Installere Python på egen PC (Spyder): Veiledning for hvordan du installerer Python og Spyder IDE for å utvikle Python-programmer. Introduksjon til programmering i: HTML: Grunnleggende om HTML-strukturer og webutvikling. Python: Introduksjon til grunnleggende programmeringskonsepter, inkludert: Variabler og Datatyper: Opprettelse og bruk av variabler med ulike datatyper som heltall (integers), desimaltall (floats), strenger (strings), lister (lists), tupler (tuples), og dictionaries (dictionaries). Operatorer: Bruk av matematiske, sammenlignings-, og logiske operatorer for beregninger og verdikomparasjoner. Løkker: Implementering av kontrollstrukturer som if-setninger, for- og while-løkker, samt avvikshantering med try og except for å styre programflyten. Funksjoner: Definisjon og anvendelse av funksjoner for å organisere koden i moduler og forbedre lesbarheten og vedlikeholdbarheten. Input og Output: Håndtering av datainnlesning fra bruker og datavisning til skjermen. Moduler og Biblioteker: Utforsking av innebygde og tredjepartsmoduler for å utvide programmets funksjonalitet. Filstyring: Åpning, lesing, skriving, og lukking av filer. Strukturering av kode: Organisering av kode ved hjelp av funksjoner, klasser, og moduler for bedre lesbarhet og vedlikehold. JavaScript: Grunnleggende programmeringskonsepter for å utvikle interaktive webapplikasjoner. Programmere App til mobil telefon: Introduksjon til å kunne programmere Android-apps. Fra sensor til web: Utvikling av programmer fra grunnen av, fra å programmere Arduino UNO som en Modbus RTU slave til å utvikle en Modbus RTU master i Python. Konfigurasjon av egen PC som webserver (IIS) for å støtte webapplikasjoner. Integrert prosjektarbeid som involverer programmering fra sensor til web, som kombinerer hardware og software for å samle, behandle, og presentere data. Inkluderer API-er (Application Programming Interfaces) og tekniske beskrivelser. Du velger selv prosjektoppgave: Oppgaven kan for eksempel innebære å innhente data via API fra https://www.yr.no/ eller en annen nettressurs. Ved å anvende Modbus for I/O på Arduino, er det mulig å utvikle et system som både overvåker og regulerer energiforbruket ditt. Brukergrensesnittet kan være basert på web, og konfigureres på din egen datamaskin. Denne utdanningen danner et solid fundament for videre læring og anvendelse av disse konseptene i automasjon i bygg. Bedriftsinterne utdanning tilpasset din bedrift Denne utdanningen kan tilbys som en bedriftsintern utdanning. Det faglige innholdet er fastsatt, men den faglige tilnærmingen kan tilpasses den enkelte bedrifts behov og ønsker. Ta kontakt for en prat, så kan vi sammen lage et utdanningsløp som passer for deg og din bedrift. Kontaktpersoner er Hans Gunnar Hansen (tlf. 91101824) og Vidar Luth-Hanssen (tlf. 91373153) [-]
Les mer
Virtuelt klasserom 4 dager 24 000 kr
This course provides the knowledge and skills to design and implement DevOps processes and practices. [+]
Students will learn how to plan for DevOps, use source control, scale Git for an enterprise, consolidate artifacts, design a dependency management strategy, manage secrets, implement continuous integration, implement a container build strategy, design a release strategy, set up a release management workflow, implement a deployment pattern, and optimize feedback mechanisms TARGET AUDIENCE Students in this course are interested in designing and implementing DevOps processes or in passing the Microsoft Azure DevOps Solutions certification exam. COURSE OBJECTIVES Plan for the transformation with shared goals and timelines Select a project and identify project metrics and Key Performance Indicators (KPI's) Create a team and agile organizational structure Design a tool integration strategy Design a license management strategy (e.g., Azure DevOps and GitHub users) Design a strategy for end-to-end traceability from work items to working software Design an authentication and access strategy Design a strategy for integrating on-premises and cloud resources Describe the benefits of using Source Control Describe Azure Repos and GitHub Migrate from TFVC to Git Manage code quality, including technical debt SonarCloud, and other tooling solutions Build organizational knowledge on code quality Explain how to structure Git repos Describe Git branching workflows Leverage pull requests for collaboration and code reviews Leverage Git hooks for automation Use Git to foster inner source across the organization Explain the role of Azure Pipelines and its components Configure Agents for use in Azure Pipelines Explain why continuous integration matters Implement continuous integration using Azure Pipelines Design processes to measure end-user satisfaction and analyze user feedback Design processes to automate application analytics Manage alerts and reduce meaningless and non-actionable alerts Carry out blameless retrospectives and create a just culture Define an infrastructure and configuration strategy and appropriate toolset for a release pipeline and application infrastructure Implement compliance and security in your application infrastructure Describe the potential challenges with integrating open-source software Inspect open-source software packages for security and license compliance Manage organizational security and compliance policies Integrate license and vulnerability scans into build and deployment pipelines Configure build pipelines to access package security and license ratings   COURSE CONTENT Module 1: Get started on a DevOps transformation journey Module 1 Lessons Introduction to DevOps Choose the right project Describe team structures Choose the DevOps tools Plan Agile with GitHub Projects and Azure Boards Introduction to source control Describe types of source control systems Work with Azure Repos and GitHub Lab 1: Agile planning and portfolio management with Azure Boards   Lab 2: Version controlling with Git in Azure Repos   After completing Module 1, students will be able to: Understand what DevOps is and the steps to accomplish it Identify teams to implement the process Plan for the transformation with shared goals and timelines Plan and define timelines for goals Understand different projects and systems to guide the journey Select a project to start the DevOps transformation Identify groups to minimize initial resistance Identify project metrics and Key Performance Indicators (KPI's) Understand agile practices and principles of agile development Create a team and agile organizational structure Module 2: Development for enterprise DevOps Module 2 Lessons Structure your Git Repo Manage Git branches and workflows Collaborate with pull requests in Azure Repos Explore Git hooks Plan foster inner source Manage Git repositories Identify technical debt Lab 3: Version controlling with Git in Azure Repos   After completing Module 2, students will be able to: Understand Git repositories Implement mono repo or multiple repos Explain how to structure Git Repos Implement a change log Describe Git branching workflows Implement feature branches Implement GitFlow Fork a repo Leverage pull requests for collaboration and code reviews Give feedback using pull requests Module 3: Implement CI with Azure Pipelines and GitHub Actions Module 3 Lessons Explore Azure Pipelines Manage Azure Pipeline agents and pools Describe pipelines and concurrency Explore Continuous integration Implement a pipeline strategy Integrate with Azure Pipelines Introduction to GitHub Actions Learn continuous integration with GitHub Actions Design a container build strategy Lab 4: Configuring agent pools and understanding pipeline styles   Lab 5: Enabling continuous integration with Azure Pipelines   Lab 6: Integrating external source control with Azure Pipelines   Lab 7: Implementing GitHub Actions by using DevOps Starter   Lab 8: Deploying Docker Containers to Azure App Service web apps   After completing Module 3, students will be able to: Describe Azure Pipelines Explain the role of Azure Pipelines and its components Decide Pipeline automation responsibility Understand Azure Pipeline key terms Choose between Microsoft-hosted and self-hosted agents Install and configure Azure pipelines Agents Configure agent pools Make the agents and pools secure Use and estimate parallel jobs Module 4: Design and implement a release strategy Module 4 Lessons Introduction to continuous delivery Create a release pipeline Explore release strategy recommendations Provision and test environments Manage and modularize tasks and templates Automate inspection of health Lab 9: Creating a release dashboard   Lab 10: Controlling deployments using Release Gates   After completing Module 4, students will be able to: Explain continuous delivery (CD) Implement continuous delivery in your development cycle Understand releases and deployment Identify project opportunities to apply CD Explain things to consider when designing your release strategy Define the components of a release pipeline and use artifact sources Create a release approval plan Implement release gates Differentiate between a release and a deployment Module 5: Implement a secure continuous deployment using Azure Pipelines Module 5 Lessons Introduction to deployment patterns Implement blue-green deployment and feature toggles Implement canary releases and dark launching Implement A/B testing and progressive exposure deployment Integrate with identity management systems Manage application configuration data Lab 11: Configuring pipelines as code with YAML   Lab 12: Setting up and running functional tests   Lab 13: Integrating Azure Key Vault with Azure DevOps   After completing Module 5, students will be able to: Explain the terminology used in Azure DevOps and other Release Management Tooling Describe what a Build and Release task is, what it can do, and some available deployment tasks Implement release jobs Differentiate between multi-agent and multi-configuration release job Provision and configure target environment Deploy to an environment securely using a service connection Configure functional test automation and run availability tests Setup test infrastructure Use and manage task and variable groups Module 6: Manage infrastructure as code using Azure and DSC Module 6 Lessons Explore infrastructure as code and configuration management Create Azure resources using Azure Resource Manager templates Create Azure resources by using Azure CLI Explore Azure Automation with DevOps Implement Desired State Configuration (DSC) Implement Bicep Lab 14: Azure deployments using Azure Resource Manager templates   After completing Module 6, students will be able to: Understand how to deploy your environment Plan your environment configuration Choose between imperative versus declarative configuration Explain idempotent configuration Create Azure resources using ARM templates Understand ARM templates and template components Manage dependencies and secrets in templates Organize and modularize templates Create Azure resources using Azure CLI Module 7: Implement security and validate code bases for compliance Module 7 Lessons Introduction to Secure DevOps Implement open-source software Software Composition Analysis Static analyzers OWASP and Dynamic Analyzers Security Monitoring and Governance Lab 15: Implement security and compliance in Azure Pipelines   Lab 16: Managing technical debt with SonarQube and Azure DevOps   After completing Module 7, students will be able to: Identify SQL injection attack Understand DevSecOps Implement pipeline security Understand threat modeling Implement open-source software Explain corporate concerns for open-source components Describe open-source licenses Understand the license implications and ratings Work with Static and Dynamic Analyzers Configure Microsoft Defender for Cloud Module 8: Design and implement a dependency management strategy Module 8 Lessons Explore package dependencies Understand package management Migrate, consolidate, and secure artifacts Implement a versioning strategy Introduction to GitHub Packages Lab 17: Package management with Azure Artifacts   After completing Module 8, students will be able to: Define dependency management strategy Identify dependencies Describe elements and componentization of a dependency management Scan your codebase for dependencies Implement package management Manage package feed Consume and create packages Publish packages Identify artifact repositories Migrate and integrate artifact repositories Module 9: Implement continuous feedback Module 9 Lessons Implement tools to track usage and flow Develop monitor and status dashboards Share knowledge within teams Design processes to automate application analytics Manage alerts, Blameless retrospectives and a just culture Lab 18: Monitoring application performance with Application Insights   Lab 19: Integration between Azure DevOps and Microsoft Teams   Lab 20: Sharing Team Knowledge using Azure Project Wikis   After completing Module 9, students will be able to: Implement tools to track feedback Plan for continuous monitoring Implement Application Insights Use Kusto Query Language (KQL) Implement routing for mobile applications Configure App Center Diagnostics Configure alerts Create a bug tracker Configure Azure Dashboards Work with View Designer in Azure Monitor [-]
Les mer
Webinar + nettkurs 3 dager 12 550 kr
Kurset er rettet mot de som vil lære grunnprinsippene og arbeidsmetodikk i AutoCAD Civil 3D. I løpet av kurset gjøres øvelser for alle emner som blir tatt opp. [+]
UTDANNINGSMÅLDu vil lære grunnleggende teknikk for bruk av programmet, og skal kunne bruke programmet til å lage 3D-modeller av terreng, veier, VA. Hente ut informasjon fra modellen og kunne produsere 2D-arbeidstegninger basert på 3D-modellen. KURSINNHOLD: Norsk kursdokumentasjon Introduksjon av Civil 3D Brukergrensesnitt Behandling av visninger Etabler og arbeide med en terrengmodell Masseberegning Punktgrupper Planering av områder med tilhørende skråningsutslag Grunnleggende vegprosjektering, konstruksjon av senterlinje, lengdeprofil, tverrprofil og vegmodell med skjæring og fylling mot terreng Bearbeide terreng ved hjelp av data fra vegmodellen Grunnleggende bruk av VA funksjonaliteten med opptegning i plan og profil, og presentasjon av data Landmåling; import av feltbokfiler fra målestasjon, og produksjon av punktgrupper og terrengmodeller av dataene Tekst/Tittelfelt Detaljering Utskrift [-]
Les mer
Nettkurs 375 kr
Kurs i cybersikkerhet med Carsten Maartmann-Moe. Du lærer om cyberkriminelle, og de største risikoene for angrep. [+]
Kurs i cybersikkerhet med Carsten Maartmann-Moe. Du lærer om cyberkriminelle,  og de største risikoene for angrep. Cybersikkerhet eller IT-sikkerhet er i nyhetene nesten hver dag, men hva er fakta og hva er fiksjon? Kan du bli hacket når som helst? Er alle ute etter din virksomhet? Hva er de største risikoene, og hvordan kan man effektivt redusere dem? I dette kurset lærer du hvordan cyberkriminelle opererer, hva de største risikoene er, og hvordan nyanser og kompleksitet påvirker hvilke sikringstiltak som fungerer. Vi vil også lære hvordan den undergrunnsøkonomien i cyberverden fungerer, slik at du kan ta gode beslutninger for å beskytte din egen og din virksomhets informasjon.    Være i stand til å forklare hva cyberkriminalitet er, og hvorfor cybersikkerhet er viktig Være i stand til å forstå hvorfor cybersikkerhet er komplekst Være i stand til å analysere hvilke risikoer som du og din virksomhet står ovenfor Være i stand til å finne og beskytte din mest verdifulle informasjon Være i stand til å håndtere sikkerhetsbrudd på en betryggende måte Morgendagens trusler   Introduksjon til kurset Hvordan er det å bli hacket Hvem er hackerene? God cybersikkerhet – en forutsetning for vellykket digitalisering Hvordan ser cyberspace ut? Å jobbe strukturert med cybersikkerhet 4 myter om cybersikkerhet Personvern og cybersikkerhet Hva er risiko, og hvordan måler du den? Vurdere og redusere risiko – tips og triks Hvordan kommunisere med ledelsen om risiko? Digitalisering og tilpasning til din virksomhet Effektive sikkerhetstiltak for din virksomhet Effektive sikkerhetstiltak for deg som person Rammeverk og verktøy Fremtidige utfordringer Hjelp jeg har blitt hacket Hvem som kan hjelpe Oppsummering og videre læring [-]
Les mer
Nettkurs 8 timer 549 kr
Dette kurset gir en omfattende introduksjon til programmering i Python. Du vil lære grunnleggende konsepter som variabler, datatyper, løkker, funksjoner og logikk. Kurset... [+]
Bli kjent med programmeringsverdenen gjennom kurset "Python: Grunnleggende", ledet av Magnus Øye hos Utdannet.no. Dette kurset gir en grundig og tilgjengelig introduksjon til Python, et av de mest populære programmeringsspråkene i verden. Det er ideelt for nybegynnere, og ingen tidligere erfaring med programmering er nødvendig. Du vil starte med grunnleggende konsepter som variabler, datatyper, og strenger, før du går videre til mer avanserte emner som løkker, funksjoner, lister, dictionaries, og tuples. Kurset fokuserer også på praktisk anvendelse, og du vil lære hvordan du kan bruke Python i virkelige scenarioer. Gjennom en serie av praktiske oppgaver, vil du bygge din forståelse og ferdigheter gradvis. Ved kursets slutt vil du ha en solid forståelse av grunnleggende programmeringsprinsipper og være i stand til å utvikle enkle Python-programmer. Dette kurset legger et sterkt grunnlag for videre læring i Python, enten du vil ta mer avanserte kurs eller starte på å bygge dine egne applikasjoner.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Tall Kapittel 3: Variabler og strenger Kapittel 4: Logikk Kapittel 5: Løkker Kapittel 6: Lister Kapittel 7: Dictionaries Kapittel 8: Tuples og sets Kapittel 9-11: Funksjoner Kapittel 12: Feilhåndtering Kapittel 13: Moduler Kapittel 14: Utfordringer Kapittel 15: Avslutning   Varighet: 8 timer og 12 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Nettkurs 375 kr
Kurs med Inga Strümke om etikk og risiko ved bruk av kunstig intelligens. Lær mer om utfordringene og mulighetene. [+]
Risikomomentene rundt kunstig intelligens er mange og berører flere fagområder. Hovedutfordringen med trygg og ansvarlig bruk av kunstig intelligens og maskinlæring er at problemstillingene utfordrer mange helt ulike fagområder, og tar opp mange temaer samfunnet aldri før har tatt stilling til. I dette kurset introduserer AI-ekspert Inga Strümke deg for de etiske, tekniske, juridiske og samfunnsmessige aspektene, og du vil få et helhetlig bilde av utfordringene og mulighetene. Fra før av har Inga Strümke laget kurset “En innføring i kunstig intelligens og maskinlæring” med Videocation. Vi anbefaler deg å se innføringskurset før du ser dette kurset om kunstig intelligens og risiko.  Introduksjon til kurset Innføring i AI-etikk Egne prosedyrer Falske nyheter og AI-skribenter Deepfakes Syntetiske data Angrep og mål Cybersikkerhet og IoT AI-regulering Personvern og differential privacy Rettferdighet Maskiner som tar jobbene og beslutningene våre Bærekraft Oppsummering [-]
Les mer