IT-kurs
Vestfold
Du har valgt: Tønsberg
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Tønsberg ) i IT-kurs
 

Nettkurs 365 dager 2 995 kr
Excel for Selgere - elæringskurs [+]
Excel for Selgere - elæringskurs [-]
Les mer
Virtuelt klasserom 2 timer 1 990 kr
20 Nov
10 Jan
Excel – Du trodde du kunne det? [+]
Excel – Du trodde du kunne det? [-]
Les mer
Sentrum Hele landet 2 dager 12 490 kr
17 Dec
27 Feb
23 Apr
Excel Ekspert kurs for deg som ønsker en omfattende fordypning i Excel knyttet til formler og funksjoner, men som ikke har tid til å sette deg inn i dette på egenhånd... [+]
Excel Ekspert kurs for deg som ønsker en omfattende fordypning i Excel knyttet til formler og funksjoner, men som ikke har tid til å sette deg inn i dette på egenhånd. Vil du lære mer om håndtering av datagrunnlag og rapportering på grunnlag fra flere kilder, samt bygging av dynamiske modeller? Da er ”Excel Ekspert” kurset for deg! Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1   Funksjoner i Excel Utarbeidelse av dynamiske modeller ved bruk av navn og funksjoner. Funksjoner. Få oversikt over flere avanserte funksjoner samt se kraften av å bruke sammensatte funksjoner Navn. Bruk navn for å forenkle og tydeliggjøre formler og funksjoner. Lag dynamiske etiketter til diagrammer Matriseregning. Få en innføring i hvordan du kan jobbe med matrisefunksjonalitet i Excel.   Alternativknapper og kombinasjonsbokser Gjør modellene dine mer interaktive ved bruk av kontroller   Dag 2   Klargjøre data for beregninger ved bruk av PowerQuery Hva er PowerQuery? Lese inn data til PowerQuery fra ulike kilder Eksempel: tilføye og slå sammen Snu krysstabell Kobling til tekstfil med problemer Manglende struktur i kolonner. Lær hvordan du kan gjengi informasjon i regnearket slik at grunnlaget kan brukes til rapportering. Duplikater. Lær forskjellige måter å kvitte seg med duplikater på. Splitte informasjon. Lær forskjellige måter for å skille data i kolonner.   Beregninger ved bruk av Pivot Eksempel: prosentvis fordeling ”i år mot i fjor”. Pivotkonsolidering og datakonsolidering.   Makroer Innspilling av makro. Hvordan lage makroer for å automatisere rutinearbeid? Redigering av makroer. Lær hvordan makroer kan gjøres mer dynamiske, kombinert med navn og bruk av meldingsbokser og ”hvis” setninger. Demonstrere viktige VBA metoder 4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti     [-]
Les mer
Hele landet Sentrum 2 dager 9 800 kr
05 Dec
17 Mar
Har du jobbet litt med Adobe Photoshop, men ønsker å lære mer på et grunnleggende nivå? Da er dette grunnkurset perfekt for deg! [+]
Ønsker du en kjapp og smertefri introduksjon i verdens mest populære bildebehandlingsprogram? Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1    Innføring Fargemodellene RGB og CMYK Beskjæring av bildet til trykk eller skjerm Utskriftsoppløsning og kameraoppløsning Forstå hvordan oppløsning fungerer Hva er de vanligste filformatene å jobbe i   Arbeidsmiljø Menyer og paletter. Hva inneholder disse, og hvordan får du fram det du ønsker? Tilpasse arbeidsmiljøet. Flytte på paletter og lagre egne oppsett tilpasset dine behov Navigering og zoom. Fokuser på det du jobber med, se helheten, og gjør dette raskt og effektivt Adobe Bridge. Introduksjon til programmet som organiserer og forhåndsviser filer og gjør det enklere for deg å jobbe Nytt dokument. Hvordan lage og tilpasse nye dokumenter med marger, spalter, sidevisning med mer?   Retusjering Bli kjent med retusjeringsverktøyene Se på hvilke muligheter du har i nyere utgave av Photoshop Fjerne uønskede elementer i bilder   Lag Bli kjent med lagpaletten Opprette, slette og organisere lag Transformering av lag Lagstiler og justeringslag   Markeringer Lær å bruke de forskjellige markeringsverktøyene Gjøre endringer på markerte områder Kombiner markeringsverktøy for å kun få tak i det du ønsker Opprett lag på bakgrunn av markeringer   Dag 2   Bildejusteringer Justere kontrast og tonalitet i et bilde Jobbe med å gjøre bilde lysere og mørkere Justere farger i et bilde Bytte ut én farge med en annen   Kombiner ulike verktøy for å utnytte mulighetene i Photoshop Jobbe med et bilde med ulike verktøy Markering og bildejustering Markering og fjerning av bakgrunnselementer Bruke smartere markedsverktøy   Lagring Lær om de ulike filformatene vi bør kjenne til Lagring til web og komprimering av bilder Lagring til trykk   Jobbe med flere bilder Klippe ut fra et bilde og lime inn i et annet Tekstverktøyet og tekstpalettene Tegneverktøy   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
Oslo 5 dager 26 900 kr
Modern C++20 Development [+]
Modern C++20 Development [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
This course teaches Network Engineers how to design, implement, and maintain Azure networking solutions. [+]
COURSE OVERVIEW  This course covers the process of designing, implementing, and managing core Azure networking infrastructure, Hybrid Networking connections, load balancing traffic, network routing, private access to Azure services, network security and monitoring. Learn how to design and implement a secure, reliable, network infrastructure in Azure and how to establish hybrid connectivity, routing, private access to Azure services, and monitoring in Azure. TARGET AUDIENCE This course is aimed at Network Engineers looking to specialize in Azure networking solutions. An Azure Network engineer designs and implements core Azure networking infrastructure, hybrid networking connections, load balance traffic, network routing, private access to Azure services, network security and monitoring. The azure network engineer will manage networking solutions for optimal performance, resiliency, scale, and security. COURSE CONTENT Module 1: Azure Virtual Networks In this module you will learn how to design and implement fundamental Azure Networking resources such as virtual networks, public and private IPs, DNS, virtual network peering, routing, and Azure Virtual NAT. Azure Virtual Networks Public IP Services Public and Private DNS Cross-VNet connectivity Virtual Network Routing Azure virtual Network NAT Lab 1: Design and implement a Virtual Network in Azure Lab 2: Configure DNS settings in Azure Lab 3: Connect Virtual Networks with Peering After completing module 1, students will be able to: Implement virtual networks Configure public IP services Configure private and public DNS zones Design and implement cross-VNET connectivity Implement virtual network routing Design and implement an Azure Virtual Network NAT   Module 2: Design and Implement Hybrid Networking In this module you will learn how to design and implement hybrid networking solutions such as Site-to-Site VPN connections, Point-to-Site VPN connections, Azure Virtual WAN and Virtual WAN hubs. Site-to-site VPN connection Point-to-Site VP connections Azure Virtual WAN Lab 4: Create and configure a local gateway Create and configure a virtual network gateway Create a Virtual WAN by using Azure Portal Design and implement a site-to-site VPN connection Design and implement a point-to-site VPN connection Design and implement authentication Design and implement Azure Virtual WAN Resources   Module 3: Design and implement Azure ExpressRoute In this module you will learn how to design and implement Azure ExpressRoute, ExpressRoute Global Reach, ExpressRoute FastPath and ExpressRoute Peering options. ExpressRoute ExpressRoute Direct ExpressRoute FastPath ExpressRoute Peering Lab 5: Create and configure ExpressRoute Design and implement Expressroute Design and implement Expressroute Direct Design and implement Expressroute FastPath   Module 4: load balancing non-HTTP(S) traffic in Azure In this module you will learn how to design and implement load balancing solutions for non-HTTP(S) traffic in Azure with Azure Load balancer and Traffic Manager. Content Delivery and Load Blancing Azure Load balancer Azure Traffic Manager Azure Monitor Network Watcher Lab 6: Create and configure a public load balancer to load balance VMs using the Azure portal Lab:7 Create a Traffic Manager Profile using the Azure portal Lab 8: Create, view, and manage metric alerts in Azure Monitor Design and implement Azure Laod Balancers Design and implement Azure Traffic Manager Monitor Networks with Azure Monitor Use Network Watcher   Module 5: Load balancing HTTP(S) traffic in Azure In this module you will learn how to design and implement load balancing solutions for HTTP(S) traffic in Azure with Azure Application gateway and Azure Front Door. Azure Application Gateway Azure Front Door Lab 9: Create a Front Door for a highly available web application using the Azure portal Lab 10: Create and Configure an Application Gateway Design and implement Azure Application Gateway Implement Azure Front Door   Module 6: Design and implement network security In this module you will learn to design and imponent network security solutions such as Azure DDoS, Azure Firewalls, Network Security Groups, and Web Application Firewall. Azure DDoS Protection Azure Firewall Network Security Groups Web Application Firewall on Azure Front Door Lab 11: Create a Virtual Network with DDoS protection plan Lab 12: Deploy and Configure Azure Firewall Lab 13: Create a Web Application Firewall policy on Azure Front Door Configure and monitor an Azure DDoS protection plan implement and manage Azure Firewall Implement network security groups Implement a web application firewall (WAF) on Azure Front Door   Module 7: Design and implement private access to Azure Services In this module you will learn to design and implement private access to Azure Services with Azure Private Link, and virtual network service endpoints. Define Azure Private Link and private endpoints Design and Configure Private Endpoints Integrate a Private Link with DNS and on-premises clients Create, configure, and provide access to Service Endpoints Configure VNET integration for App Service Lab 14: restrict network access to PaaS resources with virtual network service endpoints Lab 15: create an Azure private endpoint Define the difference between Private Link Service and private endpoints Design and configure private endpoints Explain virtual network service endpoints Design and configure access to service endpoints Integrate Private Link with DNS Integrate your App Service with Azure virtual networks   TEST CERTIFICATION This course helps to prepare for exam AZ-700 [-]
Les mer
Virtuelt eller personlig 2 timer 2 450 kr
Hypotesetesting avgjør om datasett har signifikant forskjellig snitt eller variasjon for å bestemme rotårsaker, årsakssammenhenger eller effekt av endringer. [+]
Kurs i hypotesetesting I forbedringsarbeid og problemløsning tester vi hypoteser for å bestemme rotårsaker og årsakssammenhenger. Dette kurset lærer deg å utforme og teste hypoteser. Du får svar på spørsmål som: Er det signifikante forskjeller i gjennomsnitt eller variasjon? Har endringen vi har gjort medført en signifikant forbedring?   Kurset er for deg som vil: utforme hypotese basert på egne teorier om rotårsak eller årsakssammenhenger bestemme om datasett har signifikante forskjelliger i gjennomsnitt eller variasjon avgjøre om forbedringsarbeid har gitt signifikante forskjeller forstå årsakssammenhenger ved hjelp av statistikk   Du lærer følgende: Bruk av statistisk hypotesetesting Praktisk og statistisk signifikans Statistikk og sannsynlighet Utforme hypotese Velge Hypotesetest (type data, fordeling, statistikk av interesse, # populasjoner) Trekke konklusjon basert på p-verdi Type I og type II feil Vurdering av datautvalg og prøveantall Bruke av p-verdi Vi bruker praktiske eksempler og øvelser i undervisningen.     Kursholder Kursholder Sissel Pedersen Lundeby er IASSC (International association for Six Sigma certification) akkreditert kursholder (eneste i Norge per januar 2022): "This accreditation publically reflects that you have met the standards established by IASSC such that those who participate in a training program led by you can expect to receive an acceptable level of knowledge transfer consistent with the Lean Six Sigma belt Bodies of Knowledge as established by IASSC."  Hypotesetesting er et av verktøyene som benyttes innen Lean Six Sigma, og Sissel har bred erfaring med anvendelse av dette verktøyet.  Sissel er utdannet sivilingeniør i kjemiteknikk fra NTNU, og har mer enn 20 års erfaring innen produksjon og miljøteknologi. Hennes Lean Six Sigma opplæring startet i 2002, hos et amerikansk firma, hvor hun ble Black Belt sertifisert. I 2017 ble hun også Black Belt sertifisert gjennom IASSC. Sissel har svært god erfaring med å bruke Lean Six Sigma til forbedringer, og fokuserer på å skape målbare resultater. Kursene bruker praktiske, gjenkjennelige eksempler, og formidler Lean Six Sigma på en enkel, forståelig måte.      Tilbakemeldinger "Inspirerende, faglig dyktig, folkeliggjør et teoretisk fagområde" Espen Fjeld, Kommersiell direktør hos Berendsen "Faglig meget dyktig og klar fremføring. Morsom og skaper tillit" Jon Sørensen, Produksjonsleder hos Berendsen "10/10 flink til å nå alle" Erlend Stene, Salgsleder hos Berendsen "Tydelig og bra presentert. God til å kontrollspørre og lytte (sjekke forståelse)" Morten Bodding, Produksjonsleder hos Berendsen "Utgjorde en forskjell, engasjert og dyktig" Kursdeltager fra EWOS "Du er inspirerende, positiv og dyktig i faget" Kursdeltager fra EWOS "Jeg var veldig imponert over Sissels Lean Six Sigma kunnskap. Hun gjør det enkelt å identifisere forbedringer og skape resultater" Daryl Powell, Lean Manager, Kongsberg Maritime Subsea   Praktisk informasjon Kurset arrangeres på forespørsel fra bedrifter. Åpne kurs arrangeres ihht kurskalenderen. Kurset består av et nettmøte på 2 timer. [-]
Les mer
Oslo 5 dager 30 000 kr
18 Nov
18 Nov
20 Jan
AI-102: Designing and Implementing a Microsoft Azure AI Solution [+]
AI-102: Designing and Implementing a Microsoft Azure AI Solution [-]
Les mer
Oslo 1 dag 9 900 kr
Jira Service Management Essentials (Cloud) [+]
Jira Service Management Essentials (Cloud) [-]
Les mer
Nettkurs 5 timer 549 kr
I dette kurset lærer du å annonsere med Google Ads slik at du blir synlig i det øyeblikket kunden søker etter ditt produkt eller tjeneste. Vi lærer deg å opprette og konf... [+]
Bli en ekspert i online annonsering med Google Ads gjennom dette dyptgående kurset ledet av Espen Faugstad, gründer av Utdannet.no og en veteran med over 10 års erfaring i digital markedsføring. Dette kurset er skreddersydd for alle, fra de som aldri har brukt Google Ads før, til de som har erfaring men ønsker å heve sin kompetanse til ekspertnivå. Kurset starter med grunnleggende om hvordan du oppretter og konfigurerer en Google Ads-konto. Du vil lære å installere Google Ads-taggen og konverteringssporing, utføre målgruppe- og søkeordsanalyse, og forstå hvordan Google Ads-auksjonen fungerer. Kurset dekker også hvordan du oppretter og optimaliserer ulike typer annonser, inkludert tekst-, bilde-, video- og remarketingannonser. Med en praktisk tilnærming vil kurset guide deg gjennom prosessen med å sette opp effektive kampanjer, forstå auksjonssystemet, og bruke analyseverktøy for å forbedre dine resultater. Ved kursets slutt vil du ha tilegnet deg den kunnskapen du trenger for å mestre Google Ads og drive effektiv annonsering på vegne av deg selv eller dine klienter.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Målgruppe Kapittel 3: Søkeord Kapittel 4: Auksjon Kapittel 5: Tekstannonser Kapittel 6: Bildeannonser Kapittel 7: Videoannonser Kapittel 8: Remarketing Kapittel 9: Analyse Kapittel 10: Avslutning   Varighet: 5 timer og 12 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Introduksjon til ITIL v3 med utgangspunkt i tjenestelivssyklusmodellen. Gjennomgang av livssyklusfasene tjenestestrategi, tjenestedesign, tjenesteovergang, tjenesteadmini... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: Av totalt 12 øvinger må 4 tekstbaserte øvinger og 4 flervalgstester (totalt 8 øvinger) være godkjent for å få gå opp til eksamen. Øvingene som blir godkjent må dekke et bredt spekter av de temaene som gjennomgås i emnet. Nærmere opplysninger ved studiestart. Personlig veileder: ja Vurderingsform: Skriftlig, individuell, 3 timer,  Ansvarlig: Knut Arne Strand Eksamensdato: 17.12.13 / 20.05.14         Læremål: KUNNSKAPER:Kandidaten kan:- tegne opp og forklare livssyklusmodellen til ITIL versjon 3- gjengi suksessfaktorer knyttet til innføring av ITIL- forklare hva som menes med begrepene tjenestestrategi, tjenestedesign, tjenesteovergang, tjenesteadministrasjon og kontinuerlig tjenesteforbedring- beskrive utvalgte prosesser som inngår i ITIL-standarden og hvilke arbeidsoppgaver som utføres av de aktuelle prosessene FERDIGHETER:Kandidaten kan:- redegjøre for hvordan utvalgte ITIL-prosesser typisk kan implementeres og forvaltes i en gitt organisasjon- redegjøre for hvordan utvalgte prosesser fungerer sammen og hvilken informasjon som flyter mellom dem- lage en plan for innføring av utvalgte ITIL-prosesser i en konkret bedrift- implementere utvalgte deler av ITIL-standarden i en konkret bedrift GENERELL KOMPETANSE:Kandidaten har:- grunnleggende forståelse av ITIL som beste praksis for drift av IT-systemer- forståelse for at ITIL kan implementeres i små trinn og med noen få prosesser, samt utvides til å være svært omfattende, med mange operative prosesser og funksjoner Innhold:Introduksjon til ITIL v3 med utgangspunkt i tjenestelivssyklusmodellen. Gjennomgang av livssyklusfasene tjenestestrategi, tjenestedesign, tjenesteovergang, tjenesteadministrasjon og kontinuerlig tjenesteforbedring med tilhørende prosesser og funksjoner.Les mer om faget herDemo: Her er en introduksjonsvideo for faget Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag ITIL v3 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.  [-]
Les mer
Oslo 5 dager 27 900 kr
17 Mar
17 Mar
16 Jun
GDPR - Certified Data Protection Officer [+]
GDPR - Certified Data Protection Officer [-]
Les mer
Bedriftsintern 3 dager 27 000 kr
In this course, application developers learn how to design, develop, and deploy applications that seamlessly integrate components from the Google Cloud ecosystem. [+]
Through a combination of presentations, demos, and hands-on labs, participants learn how to use GCP services and pre-trained machine learning APIs to build secure, scalable, and intelligent cloud-native applications. Objectives This course teaches participants the following skills: Use best practices for application development Choose the appropriate data storage option for application data Implement federated identity management Develop loosely coupled application components or microservices Integrate application components and data sources Debug, trace, and monitor applications Perform repeatable deployments with containers and deployment services Choose the appropriate application runtime environment; use Google Container Engine as a runtime environment and later switch to a no-ops solution with Google App Engine Flex All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Best Practices for Application Development -Code and environment management-Design and development of secure, scalable, reliable, loosely coupled application components and microservices-Continuous integration and delivery-Re-architecting applications for the cloud Module 2: Google Cloud Client Libraries, Google Cloud SDK, and Google Firebase SDK -How to set up and use Google Cloud Client Libraries, Google Cloud SDK, and Google Firebase SDK-Lab: Set up Google Client Libraries, Google Cloud SDK, and Firebase SDK on a Linux instance and set up application credentials Module 3: Overview of Data Storage Options -Overview of options to store application data-Use cases for Google Cloud Storage, Google Cloud Datastore, Cloud Bigtable, Google Cloud SQL, and Cloud Spanner Module 4: Best Practices for Using Cloud Datastore -Best practices related to the following:-Queries-Built-in and composite indexes-Inserting and deleting data (batch operations)-Transactions-Error handling-Bulk-loading data into Cloud Datastore by using Google Cloud Dataflow-Lab: Store application data in Cloud Datastore Module 5: Performing Operations on Buckets and Objects -Operations that can be performed on buckets and objects-Consistency model-Error handling Module 6: Best Practices for Using Cloud Storage -Naming buckets for static websites and other uses-Naming objects (from an access distribution perspective)-Performance considerations-Setting up and debugging a CORS configuration on a bucket-Lab: Store files in Cloud Storage Module 7: Handling Authentication and Authorization -Cloud Identity and Access Management (IAM) roles and service accounts-User authentication by using Firebase Authentication-User authentication and authorization by using Cloud Identity-Aware Proxy-Lab: Authenticate users by using Firebase Authentication Module 8: Using Google Cloud Pub/Sub to Integrate Components of Your Application -Topics, publishers, and subscribers-Pull and push subscriptions-Use cases for Cloud Pub/Sub-Lab: Develop a backend service to process messages in a message queue Module 9: Adding Intelligence to Your Application -Overview of pre-trained machine learning APIs such as Cloud Vision API and Cloud Natural Language Processing API Module 10: Using Cloud Functions for Event-Driven Processing -Key concepts such as triggers, background functions, HTTP functions-Use cases-Developing and deploying functions-Logging, error reporting, and monitoring Module 11: Managing APIs with Google Cloud Endpoints -Open API deployment configuration-Lab: Deploy an API for your application Module 12: Deploying an Application by Using Google Cloud Build, Google Cloud Container Registry, and Google Cloud Deployment Manager -Creating and storing container images-Repeatable deployments with deployment configuration and templates-Lab: Use Deployment Manager to deploy a web application into Google App Engine flexible environment test and production environments Module 13: Execution Environments for Your Application -Considerations for choosing an execution environment for your application or service:-Google Compute Engine-Kubernetes Engine-App Engine flexible environment-Cloud Functions-Cloud Dataflow-Lab: Deploying your application on App Engine flexible environment Module 14: Debugging, Monitoring, and Tuning Performance by Using Google Stackdriver -Stackdriver Debugger-Stackdriver Error Reporting-Lab: Debugging an application error by using Stackdriver Debugger and Error Reporting-Stackdriver Logging-Key concepts related to Stackdriver Trace and Stackdriver Monitoring.-Lab: Use Stackdriver Monitoring and Stackdriver Trace to trace a request across services, observe, and optimize performance [-]
Les mer