IT-kurs
Du har valgt: Kurs i programvare og applikasjoner
Nullstill
Filter
Ferdig

-

Mer enn 100 treff i Kurs i programvare og applikasjoner
 

Virtuelt eller personlig Bærum Hele landet 3 dager 12 480 kr
27 Jan
24 Mar
02 Jun
Kurset er for deg som skal konstruere elektroinstallasjonstegninger i Revit MEP. [+]
  Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.     Revit MEP MagiCAD El Basis I   Her er et utvalg av temaene du vil lære på kurset: Introduksjon til BIM Link av Revit-modeller Koordinering av modeller Utarbeidelse av EL-installasjoner Snitt og detaljer Skjemaer og uttrekk til utprint   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
24 Mar
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Bedriftsintern 4 dager 32 000 kr
This four-day instructor-led class provides participants a hands-on introduction to designing and building data processing systems on Google Cloud Platform. Through a com... [+]
Objectives This course teaches participants the following skills: Design and build data processing systems on Google Cloud Platform Process batch and streaming data by implementing autoscaling data pipelines on Cloud Dataflow Derive business insights from extremely large datasets using Google BigQuery Train, evaluate, and predict using machine learning models using Tensorflow and Cloud ML Leverage unstructured data using Spark and ML APIs on Cloud Dataproc Enable instant insights from streaming data   All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introduction to Data Engineering -Explore the role of a data engineer-Analyze data engineering challenges-Intro to BigQuery-Data Lakes and Data Warehouses-Demo: Federated Queries with BigQuery-Transactional Databases vs Data Warehouses-Website Demo: Finding PII in your dataset with DLP API-Partner effectively with other data teams-Manage data access and governance-Build production-ready pipelines-Review GCP customer case study-Lab: Analyzing Data with BigQuery Module 2: Building a Data Lake -Introduction to Data Lakes-Data Storage and ETL options on GCP-Building a Data Lake using Cloud Storage-Optional Demo: Optimizing cost with Google Cloud Storage classes and Cloud Functions-Securing Cloud Storage-Storing All Sorts of Data Types-Video Demo: Running federated queries on Parquet and ORC files in BigQuery-Cloud SQL as a relational Data Lake-Lab: Loading Taxi Data into Cloud SQL Module 3: Building a Data Warehouse -The modern data warehouse-Intro to BigQuery-Demo: Query TB+ of data in seconds-Getting Started-Loading Data-Video Demo: Querying Cloud SQL from BigQuery-Lab: Loading Data into BigQuery-Exploring Schemas-Demo: Exploring BigQuery Public Datasets with SQL using INFORMATION_SCHEMA-Schema Design-Nested and Repeated Fields-Demo: Nested and repeated fields in BigQuery-Lab: Working with JSON and Array data in BigQuery-Optimizing with Partitioning and Clustering-Demo: Partitioned and Clustered Tables in BigQuery-Preview: Transforming Batch and Streaming Data Module 4: Introduction to Building Batch Data Pipelines -EL, ELT, ETL-Quality considerations-How to carry out operations in BigQuery-Demo: ELT to improve data quality in BigQuery-Shortcomings-ETL to solve data quality issues Module 5: Executing Spark on Cloud Dataproc -The Hadoop ecosystem-Running Hadoop on Cloud Dataproc-GCS instead of HDFS-Optimizing Dataproc-Lab: Running Apache Spark jobs on Cloud Dataproc Module 6: Serverless Data Processing with Cloud Dataflow -Cloud Dataflow-Why customers value Dataflow-Dataflow Pipelines-Lab: A Simple Dataflow Pipeline (Python/Java)-Lab: MapReduce in Dataflow (Python/Java)-Lab: Side Inputs (Python/Java)-Dataflow Templates-Dataflow SQL Module 7: Manage Data Pipelines with Cloud Data Fusion and Cloud Composer -Building Batch Data Pipelines visually with Cloud Data Fusion-Components-UI Overview-Building a Pipeline-Exploring Data using Wrangler-Lab: Building and executing a pipeline graph in Cloud Data Fusion-Orchestrating work between GCP services with Cloud Composer-Apache Airflow Environment-DAGs and Operators-Workflow Scheduling-Optional Long Demo: Event-triggered Loading of data with Cloud Composer, Cloud Functions, -Cloud Storage, and BigQuery-Monitoring and Logging-Lab: An Introduction to Cloud Composer Module 8: Introduction to Processing Streaming Data Processing Streaming Data Module 9: Serverless Messaging with Cloud Pub/Sub -Cloud Pub/Sub-Lab: Publish Streaming Data into Pub/Sub Module 10: Cloud Dataflow Streaming Features -Cloud Dataflow Streaming Features-Lab: Streaming Data Pipelines Module 11: High-Throughput BigQuery and Bigtable Streaming Features -BigQuery Streaming Features-Lab: Streaming Analytics and Dashboards-Cloud Bigtable-Lab: Streaming Data Pipelines into Bigtable Module 12: Advanced BigQuery Functionality and Performance -Analytic Window Functions-Using With Clauses-GIS Functions-Demo: Mapping Fastest Growing Zip Codes with BigQuery GeoViz-Performance Considerations-Lab: Optimizing your BigQuery Queries for Performance-Optional Lab: Creating Date-Partitioned Tables in BigQuery Module 13: Introduction to Analytics and AI -What is AI?-From Ad-hoc Data Analysis to Data Driven Decisions-Options for ML models on GCP Module 14: Prebuilt ML model APIs for Unstructured Data -Unstructured Data is Hard-ML APIs for Enriching Data-Lab: Using the Natural Language API to Classify Unstructured Text Module 15: Big Data Analytics with Cloud AI Platform Notebooks -What’s a Notebook-BigQuery Magic and Ties to Pandas-Lab: BigQuery in Jupyter Labs on AI Platform Module 16: Production ML Pipelines with Kubeflow -Ways to do ML on GCP-Kubeflow-AI Hub-Lab: Running AI models on Kubeflow Module 17: Custom Model building with SQL in BigQuery ML -BigQuery ML for Quick Model Building-Demo: Train a model with BigQuery ML to predict NYC taxi fares-Supported Models-Lab Option 1: Predict Bike Trip Duration with a Regression Model in BQML-Lab Option 2: Movie Recommendations in BigQuery ML Module 18: Custom Model building with Cloud AutoML -Why Auto ML?-Auto ML Vision-Auto ML NLP-Auto ML Tables [-]
Les mer
Webinar + nettkurs 2 dager 9 990 kr
Kurset er rettet mot deg som vil lære å prosjektere Vann- og Avløp i AutoCAD Civil 3D. [+]
Kurset er rettet mot deg som vil lære å prosjektere Vann- og Avløp i AutoCAD Civil 3D. I løpet av kurset gjøres øvelser for alle emner som blir tatt opp. Du vil ved endt kurs kunne bruke programmet til å lage 3D-modeller av terreng og VA-anlegg, hente ut informasjon fra modellen og kunne produsere 2D-arbeidstegninger basert på 3D-modellen. Det følger med norsk kursdokumentasjon som dekker alle aspekter for VA-prosjektering i Civil 3D med Focus CAT VA. Kursinnhold: Bruk av malfiler i henhold til norsk VA-norm og håndbok R700 Brukergrensesnitt for Focus CAT VA Repetisjon av å etablere og arbeide med en terrengmodell Innhenting av eksisterende ledningsnettverk Prosjektere 3D-ledningsnettverk Opptegningsregler i henhold til norm Verktøy for å redigere og modifisere ledningsnettverket Kollisjonskontroll Deleliste og tekniske tabeller/rapporter Overvannsanalyser (Storm and Sanitary analysis) Stikningsdata/maskinstyring 2D-tegninger i plan, profil og tverrprofil Fagmodeller [-]
Les mer
Bedriftsintern 3 dager 27 000 kr
This three-day instructor-led class introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud, with a focus ... [+]
Through a combination of presentations, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, systems, and application services. This course also covers deploying practical solutions including securely interconnecting networks, customer-supplied encryption keys, security and access management, quotas and billing, and resource monitoring. Course Objectives This course teaches participants the following skills: Configure VPC networks and virtual machines Administer Identity and Access Management for resources Implement data storage services in Google Cloud Manage and examine billing of Google Cloud resources Monitor resources using Google Cloud services Connect your infrastructure to Google Cloud Configure load balancers and autoscaling for VM instances Automate the deployment of Google Cloud infrastructure services Leverage managed services in Google Cloud All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introduction to Google Cloud -List the different ways of interacting with Google Cloud-Use the Cloud Console and Cloud Shell-Create Cloud Storage buckets-Use the Google Cloud Marketplace to deploy solutions Module 2: Virtual Networks -List the VPC objects in Google Cloud-Differentiate between the different types of VPC networks-Implement VPC networks and firewall rules-Implement Private Google Access and Cloud NAT Module 3: Virtual Machines -Recall the CPU and memory options for virtual machines-Describe the disk options for virtual machines-Explain VM pricing and discounts-Use Compute Engine to create and customize VM instances Module 4: Cloud IAM -Describe the Cloud IAM resource hierarchy-Explain the different types of IAM roles-Recall the different types of IAM members-Implement access control for resources using Cloud IAM Module 5: Data Storage Services -Differentiate between Cloud Storage, Cloud SQL, Cloud Spanner, Cloud Firestore and Cloud Bigtable-Choose a data storage service based on your requirements-Implement data storage services Module 6: Resource Management -Describe the cloud resource manager hierarchy-Recognize how quotas protect Google Cloud customers-Use labels to organize resources-Explain the behavior of budget alerts in Google Cloud-Examine billing data with BigQuery Module 7: Resource Monitoring -Describe the services for monitoring, logging, error reporting, tracing, and debugging-Create charts, alerts, and uptime checks for resources with Cloud Monitoring-Use Cloud Debugger to identify and fix errors Module 8: Interconnecting Networks -Recall the Google Cloud interconnect and peering services available to connect your infrastructure to Google Cloud-Determine which Google Cloud interconnect or peering service to use in specific circumstances-Create and configure VPN gateways-Recall when to use Shared VPC and when to use VPC Network Peering Module 9: Load Balancing and Autoscaling -Recall the various load balancing services-Determine which Google Cloud load balancer to use in specific circumstances-Describe autoscaling behavior-Configure load balancers and autoscaling Module 10: Infrastructure Modernization -Automate the deployment of Google Cloud services using Deployment Manager or Terraform-Outline the Google Cloud Marketplace Module 11: Managed Services Describe the managed services for data processing in Google Cloud [-]
Les mer
Webinar + nettkurs 3 dager 12 550 kr
Kurset er rettet mot deg som har vært gjennom Revit Architecture grunnkurs og brukt programmet litt. I løpet av kurset gjøres øvelser for alle emner som blir tatt opp. [+]
UTDANNINGSMÅLDu vil lære avansert bruk av programmet, og skal kunne utføre tilpassninger og oppbygning av egne objekter. Du lærer også om håndtering av prosjekter og utarbeidelse av rapporter. KURSINNHOLD: Tags Families Group Tabeller - dør og vinduslister DWG import - export Terreng /kart Prosjektfaser Worksharing - flere arkitekter i et prosjekt Legend Filter [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
17 Feb
21 Apr
30 Jun
This course teaches developers how to create end-to-end solutions in Microsoft Azure. Students will learn how to implement Azure compute solutions, create Azure Functions... [+]
Agenda Module 1: Creating Azure App Service Web Apps -Azure App Service core concepts-Creating an Azure App Service Web App-Configuring and Monitoring App Service apps-Scaling App Service apps-Azure App Service staging environments Module 2: Implement Azure functions -Azure Functions overview-Developing Azure Functions-Implement Durable Functions Module 3: Develop solutions that use blob storage -Azure Blob storage core concepts-Managing the Azure Blob storage lifecycle-Working with Azure Blob storage Module 4: Develop solutions that use Cosmos DB storage -Azure Cosmos DB overview-Azure Cosmos DB data structure-Working with Azure Cosmos DB resources and data Module 5: Implement IaaS solutions -Provisioning VMs in Azure-Create and deploy ARM templates-Create container images for solutions-Publish a container image to Azure Container Registry-Create and run container images in Azure Container Instances Module 6: Implement user authentication and authorization -Microsoft Identity Platform v2.0-Authentication using the Microsoft Authentication Library-Using Microsoft Graph-Authorizing data operations in Azure Storage Module 7: Implement secure cloud solutions -Manage keys, secrets, and certificates by using the KeyVault API-Implement Managed Identities for Azure resources-Secure app configuration data by using Azure App Configuration Module 8: Implement API Management -API Management overview-Defining policies for APIs-Securing your APIs Module 9: Develop App Service Logic Apps -Azure Logic Apps overview-Creating custom connectors for Logic Apps Module 10: Develop event-based solutions -Implement solutions that use Azure Event Grid-Implement solutions that use Azure Event Hubs-Implement solutions that use Azure Notification Hubs Module 11: Develop message-based solutions -Implement solutions that use Azure Service Bus-Implement solutions that use Azure Queue Storage queues Module 12: Monitor and optimize Azure solutions -Overview of monitoring in Azure-Instrument an app for monitoring-Analyzing and troubleshooting apps-Implement code that handles transient faults Module 13: Integrate caching and content delivery within solutions -Develop for Azure Cache for Redis-Develop for storage on CDNs [-]
Les mer
Oslo Bergen Og 1 annet sted 5 dager 34 000 kr
17 Feb
24 Feb
17 Mar
CCNA: Implementing and Administering Cisco Solutions [+]
CCNA: Implementing and Administering Cisco Solutions [-]
Les mer
Virtuelt eller personlig 1 dag 5 950 kr
Styrkeberegning med Inventor og Excel [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt.NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Styrkeberegning med Inventor og Excel Kurset retter seg mot konstruktører og ingeniører som bruker Inventor og som har behov for å beregne sine konstruksjoner og design. For strukturingeniører eller mer avansert analyse anbefaler vi vårt Nastran-kurs. Det undervises i typisk bruk av Finite Element-analyseverktøyene i Inventor ved å arbeide med belastning av gjenstander og konstruksjoner samt optimalisering av gjenstander i forhold til f.eks. vekt eller andre dimensjoner. Kurset er basert på beste praksis for metoder og bruk av Inventor. Målsetting Du skal kunne sette opp solide og riktige forutsetninger innen FEA-analyse.Du kan gjennomføre en FEA-analyse og dokumentere resultater basert på en rapport som beskriver emnets påvirkning med beregningsdata, påvirkningsresultater og visuelle illustrasjoner. Andre tema på kurset: Hvor kommer kreftene fra? Materialegenskaper Geometriegenskaper Frihetsgrader Simuleringsdreven produktutvikling Modellforenkling Ved påmelding på kurs ønsker vår kursholder svar på følgende spørsmål: Bakgrunnsbehov – hva er bakgrunnen for at dere ønsker å tilegne dere kompetanse i simulering? Har dere behov for å kunne gjøre styrkeberegninger og utføre dimensjonering, eller bare kjøre simuleringer for å se f.eks. spenningsfordeling? Hva slags konstruksjoner skal dere utføre dette på? Maskinerte enkeltkomponenter, rammer, trykksatt utstyr, platekonstruksjoner, store sammenstillinger, etc. Har dere behov for å analysere mekanismer/maskindynamikk? Hvilke erfaringer har dere med simulering/styrkeberegning fra før? Utdanningsnivå/relevant erfaring for kursdeltakere. Kurset inneholder litt teori og matematikk som deltakerne bør kunne anvende i etterkant. [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led course introduces participants to the big data capabilities of Google Cloud Platform. [+]
Through a combination of presentations, demos, and hands-on labs, participants get an overview of the Google Cloud platform and a detailed view of the data processing and machine learning capabilities. This course showcases the ease, flexibility, and power of big data solutions on Google Cloud Platform. Learning Objectives This course teaches participants the following skills: Identify the purpose and value of the key Big Data and Machine Learning products in the Google Cloud Platform Use Cloud SQL and Cloud Dataproc to migrate existing MySQL and Hadoop/Pig/Spark/Hive workloads to Google Cloud Platform Employ BigQuery and Cloud Datalab to carry out interactive data analysis Train and use a neural network using TensorFlow Employ ML APIs Choose between different data processing products on the Google Cloud Platform Course Outline Module 1: Introducing Google Cloud Platform -Google Platform Fundamentals Overview-Google Cloud Platform Big Data Products Module 2: Compute and Storage Fundamentals -CPUs on demand (Compute Engine)-A global filesystem (Cloud Storage)-CloudShell-Lab: Set up an Ingest-Transform-Publish data processing pipeline Module 3: Data Analytics on the Cloud -Stepping-stones to the cloud-CloudSQL: your SQL database on the cloud-Lab: Importing data into CloudSQL and running queries-Spark on Dataproc-Lab: Machine Learning Recommendations with Spark on Dataproc Module 4: Scaling Data Analysis -Fast random access-Datalab-BigQuery-Lab: Build machine learning dataset Module 5: Machine Learning -Machine Learning with TensorFlow-Lab: Carry out ML with TensorFlow-Pre-built models for common needs-Lab: Employ ML APIs Module 6: Data Processing Architectures -Message-oriented architectures with Pub/Sub-Creating pipelines with Dataflow-Reference architecture for real-time and batch data processing Module 7: Summary -Why GCP?-Where to go from here-Additional Resources [-]
Les mer
Virtuelt eller personlig 3 dager 11 200 kr
04 Feb
11 Mar
07 Apr
Kurset vil gi en grundig gjennomgang av hovedkommandoene i AutoCAD. Deltagerne vil også få nødvendig forståelse for prinsipper og arbeidsmetoder i programmet. [+]
Kurset vil gi deg en grunnleggende forståelse i bruk av tegne- og konstruksjonsprogrammet AutoCAD. AutoCAD 2D Grunnkurs:• Hovedprinsipper i AutoCAD's brukergrensesnitt• Oppretting og lagring av tegninger• Tegne- og editeringskommandoer• Hjelpefunksjoner for å tegne nøyaktig• Skjermstyring• Lagoppbygging og struktur• Målsetting, teksting og skravering• Symbol- og blokkhåndtering• Layout/plotting   Etter gjennomført kurs skal kursdeltagerne bl.a. kunne bruke AutoCAD til å: • Opprette tegninger• Utføre de vanligste tegne- og editeringsfunksjoner• Bruke og forstå lagoppbygging• Målsette og påføre tekst• Skrive ut tegning i målestokk  [-]
Les mer
Virtuelt eller personlig 1 dag 5 950 kr
Målsetning for kurset: Opparbeide avanserte ferdigheter til å stille krav til de som oppretter IFC-modeller, sette opp egendefinerte regler, klassifikasjoner og mengdeutt... [+]
  Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Solibri Office Avansert På kurset vil du lære å: Konfigurere optimal eksport av IFC-filer fra Revit Skape egne klassifikasjoner og bruke disse i mengdeuttak og egendefinerte regler Bli kjent med eksisterende regelsett og tilpasning av disse Opprette egne regelsett Opprette mengdeuttak og basere disse på klassifikasjoner. Skape rapporter Spesialtilpasning av Solibri Office Håndtere saker i BCF-format Spesialtilpasset kurs: NTI anbefaler spesialtilpassede kurs for bedrifter som planlegger å sende to eller flere deltakere på Solibri-kurs. Grunnen til dette er at Solibri brukes av mange forskjellige aktører og profesjoner i BAE-bransjen, og følgelig blir de åpne kursene ofte for generelle for enkelte kursdeltakere. I et spesialtilpasset kurs vil vår kurskonsulent kartlegge fokusområdene i forkant av kurset, og gjennomføre kurset i henhold til selskapets behov, gjerne basert på kundens egne modeller. Utbyttet av kurset blir følgelig mye større.   Ta kontakt med oss på telefon 483 12 300, epost: salg-no@nticad.biz eller les mer på www.nti.biz [-]
Les mer
Nettkurs 2 timer 1 990 kr
Informasjon i SharePoint er lagret i lister. Bli kjent med SharePoint liste-apper og hvordan du tilpasser eller lager egne med krav til utfylling, oppslag i andre lister,... [+]
Informasjon i SharePoint er lagret i lister. Bli kjent med SharePoint liste-apper og hvordan du tilpasser eller lager egne med krav til utfylling, oppslag i andre lister, beregninger og validering av innfylte verdier. Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Om Lister Bruk av listemalene i SharePoint Lag liste av Excel-bok Lag liste fra bunn av i SharePoint   Bruke lister Kolonnetyper og eksempler på bruk Opprette en liste og listeinnstillinger Krav om utfylling   Utvide lister Valider verdier bruker fyller inn Logg-kolonne Beregningskolonner og formler Presenter informasjon med visninger   Avanserte temaer Visnings-stiler Innføring i områdekolonner Veien videre til innholdstyper   3 gode grunner til å delta 1. Møt SharePoint sine liste-apper og lær å lage liste fra bunn eller fra eksisterende Excel-bok 2. Lær om kolonner som beregner eller sjekker inntastede verdier 3. Presenter informasjonen med visninger    [-]
Les mer
Nettkurs 1 time
Få en gratis, effektiv og god innføring i Outlook! Lær hvordan du jobber med e-post, kalender, oppgaver og kontakter. [+]
Få en gratis, effektiv og god innføring i Outlook! Lær hvordan du jobber med e-post, kalender, oppgaver og kontakter. Webinaret varer i 1 time og består av 1 økt à 45 min, samt 15 min spørsmålsrunde.   Kursinnhold:   Generelt Gjennomgang av båndet og programvinduet   E-post Tilpasse visningen for innboks og andre mapper Sende, svare på, og videresende e-post Legge til en signatur   Kalender Legge inn en avtale Legge inn en heldagshendelse Åpne kalenderen til kollegaer   Oppgaver Opprette en oppgave Følge opp e-post   Kontakter Opprette nye kontakter Lage en kontaktgruppe   Veien videre Se på flere muligheter i Outlook   [-]
Les mer
Nettkurs 12 måneder 10 900 kr
This course comprehensively covers the ArchiMate® 3 modeling language and how it can be practically applied when creating enterprise architecture models. [+]
This course is ideal for individuals or teams who wish to build a solid understanding of ArchiMate 3 and develop architecture artifacts using ArchiMate. What's new in ArchiMate 3.0? Like ArchiMate 2, ArchiMate 3 is a comprehensive modeling language that allows architects to create commonly understood and integrated visualizations of the essential enterprise architecture domains. Published as an Open Group Standard in June 2016, the ArchiMate 3 specification is a major update to ArchiMate 2.1. New features in version 3 include:• New concepts - Strategy and Motivation• New entities – Application, Technology and Implementation layers• Better ways to connect planning with implementation• Improvements in cross-layer relationships• New ‘Physical’ layer• Improvements in the viewpoints definition mechanism   Examination Certification in ArchiMate requires you to pass both a Foundation exam and a Certified exam.The Foundation exam is a closed book, multiple choice exam consisting of 40 questions. There is a time limit of 60 minutes and the pass-rate is 60%.After passing the Foundation exam you can then move onto the Practitioner exam, which is an open book, multiple choice exam consisting of eight questions. There is a time limit of 90 minutes and the pass-rate is 70%.A number of exercises are interspersed throughout the course, which are aimed at testing your understanding and practical application of the training you have just received. At the end of the course, a number of mock-exam case study scenarios are provided which have been designed to simulate the actual exam.After passing both exams you will become a certified ArchiMate 3 Practitioner! [-]
Les mer