IT-kurs
Du har valgt: Kurs i programvare og applikasjoner
Nullstill
Filter
Ferdig

-

Mer enn 100 treff i Kurs i programvare og applikasjoner
 

3 dager 1 500 kr
PowerPoint 2010 er et presentasjonsprogram som brukes når vi skal vise fram data – enten det er tekst, bilder, tall eller tegninger. [+]
PowerPoint 2010 er et presentasjonsprogram som brukes når vi skal vise fram data – enten det er tekst, bilder, tall eller tegninger. Programmet kan brukes til å lage lysark som skrives ut, eller vi kan vise presentasjonen ved hjelp av PC + videokanon. På kurset vil grunnleggende funksjoner vektlegges, men vi vil og se på hvordan en bygger opp og setter sammen en presentasjon. Forkunnskaper: Du må ha kunnskaper tilsvarende PC-begynnerkurs. Brukere av Powerpoint 2007 kan og følge dette kurset. [-]
Les mer
Oslo 1 dag 9 500 kr
09 May
09 May
13 Jun
Develop dynamic reports with Microsoft Power BI [+]
Develop dynamic reports with Microsoft Power BI [-]
Les mer
Nettkurs 40 minutter 7 000 kr
MoP®, er et rammeverk og en veiledning for styring av prosjekter og programmer i en portefølje. Sertifiseringen MoP Foundation gir deg en innføring i porteføljestyring me... [+]
Du vil få tilsendt en «Core guidance» bok og sertifiserings-voucher i en e-post fra Peoplecert. Denne vil være gyldig i ett år. Tid for sertifiseringstest avtales som beskrevet i e-post med voucher. Eksamen overvåkes av en web-basert eksamensvakt.   Eksamen er på engelsk. Eksamensformen er multiple choice 50 spørsmål skal besvares, og du består ved 50% korrekte svar (dvs 25 av 50 spørsmål). Deltakerne har 40 minutter til rådighet på eksamen.  Ingen hjelpemidler er tillatt.     [-]
Les mer
Klasserom + nettkurs Sentrum 1 dag 4 490 kr
28 Mar
07 May
18 Jun
Om du ikke har jobbet med Outlook tidligere, men skal begynne å ta programet i bruk? Da er dette kurset perfekt for deg! [+]
Har du lite erfaring med Outlook og ønsker en innføring i programmet? På dette kurset lærer du hvordan du bruker Outlook med sending av e-post, oppretting av kontakter, samt bruk av kalender og oppgaver. Du jobber i ditt eget tempo via et e-læringsprogram, med instruktør tilstede i rommet som hjelper deg om du står fast.   Kursinnhold:   Bli kjent med Outlook Elektronisk post Trygghet og sikkerhet Oppstart Mottak av meldinger Lesing av meldinger E-postkontoer Nyhetsstrømmer (RSS) Hjelpesystemet   Sending av meldinger Sending av meldinger Innskriving og redigering Signatur Meldingsformater Stavekontroll Vedlegg Viktighet og følsomhet Oppfølgingsflagg Svar og videresending Leverings- og lesebekreftelse Angi mottakere av svar Tidsbegrensning Svarknapper   Adresseboka Adresseboka Distribusjonslister   Organisering av meldinger Sortering av meldinger Søk etter meldinger Søkemapper Organisering av meldinger Aktivering av meldinger Søppelpost Regelhåndtering Farger Kategorier Fraværsassistenten   Kalenderen Navigering i kalenderen Planlegging av aktiviteter Arbeidsområde Svar på møteinnkallelser Påminnelse Redigering av aktiviteter Dele kalenderen med andre Oppgaver i kalenderen Utskrift av kalenderen Lagring som webside   Kontakter Kontakter Sending av kontaktinformasjon   Oppgaver Oppgaver Oppgaveforespørsler Svar på oppgaveforespørsler Planer i dag   Notater og logg Notater Visning av notater Logg   [-]
Les mer
Virtuelt eller personlig Bergen Bærum 3 dager 12 480 kr
23 Apr
12 May
Dagens byggebransje fokuserer på BIM. Autodesk Revit Architecture er det ledende systemet i Norge for arkitekter innen BIM prosjektering. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Revit Architecture Basis I Her er et utvalg av temaene du vil lære på kurset: Introduksjon til BIM Modellering av 3D-bygningsmodell i flere detaljeringsgrader (informasjonsnivåer) Samarbeid med andre fagmodeller Generering av planer, snitt, fasader, detaljer og perspektiver Skjemaer og mengdeuttrekk Oppsetning til print A Anvendelse av relevante NTItools Kurset gir deg innblikk i bruken av BIM-arbeidsmetoder med Revit som hovedverktøy. Det bygges opp en full, parametrisk 3D-modell, hvor de grunnleggende funksjonene i Revit benyttes. DU vil få en bred forståelse av både prinsipper og funksjoner i Revit og skal bli i stand til å øke detaljeringen av prosjektet ytterligere.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
1 dag 7 600 kr
Med Power Automate kan du automatisere forretningsprosesser og handlinger på tvers av organisasjonen, med lite eller ingen koding. Ta farvel med kjedelige, repetitive opp... [+]
Med Power Automate kan du automatisere forretningsprosesser og handlinger på tvers av organisasjonen, med lite eller ingen koding. Ta farvel med kjedelige, repetitive oppgaver og effektiviser hverdagen. Ikke minst er Power Automate ofte en del av Microsoft 365 lisensen du kanskje allerede har. Power Automate er Microsoft sin løsning for automatisering av prosesser, og er en tjeneste som lar deg utvikle flyter på tvers av en rekke applikasjoner og tjenester med lite eller ingen koding. Du kan selvfølgelig få tjenestene i Microsoft 365 til å snakke sammen slik du vil, men det finnes også flere hundre koblinger til andre eksterne tjenester. I tillegg har du naturligvis mulighet til å benytte generelle tilkoblinger, for å hente data fra egne APIer, databaser og tjenester. Power Automate gir muligheter til brukere på tvers av organisasjonen som tidligere i stor grad har vært forbeholdt utviklere.  I løpet av kurset vil deltagere få en hands-on opplevelse av hva Power Automate er, hva det kan brukes til, og hvordan en kan jobbe med det. Kursholderen vil gjøre deltakerne godt kjent med terminologien, demonstrere løsninger og utfordre med øvelser.  Dette er et introduksjonskurs, så det er naturligvis mye vi ikke vil rekke å gå gjennom. Kursleder vil peke deltagerne til gode kilder for videre læring. Det er også mulig å be om bedriftsinterne kurs på videregående nivå, der man kan spesifisere ønsket fokus og spesifikke behov. Disse kan også kjøres som workshops.   TA MED EGEN PC   Kursinnhold Power Automate - det store bildet Ulike flyttyper Bli kjent med arbeidsflaten Datakilder og koblinger Beste praksis for navngivning, utvikling, dokumentering m.m. Bruksområder og viktige begrensninger   [-]
Les mer
Oslo Bergen Og 1 annet sted 2 dager 12 500 kr
01 Apr
28 Apr
28 Apr
Power BI Desktop [+]
Power BI Desktop [-]
Les mer
Oslo 5 dager 27 500 kr
07 Apr
07 Apr
02 Jun
AZ-305: Microsoft Azure Architect Design [+]
AZ-305: Microsoft Azure Architect Design [-]
Les mer
Bedriftsintern 4 dager 32 000 kr
This four-day instructor-led class provides participants a hands-on introduction to designing and building data processing systems on Google Cloud Platform. Through a com... [+]
Objectives This course teaches participants the following skills: Design and build data processing systems on Google Cloud Platform Process batch and streaming data by implementing autoscaling data pipelines on Cloud Dataflow Derive business insights from extremely large datasets using Google BigQuery Train, evaluate, and predict using machine learning models using Tensorflow and Cloud ML Leverage unstructured data using Spark and ML APIs on Cloud Dataproc Enable instant insights from streaming data   All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introduction to Data Engineering -Explore the role of a data engineer-Analyze data engineering challenges-Intro to BigQuery-Data Lakes and Data Warehouses-Demo: Federated Queries with BigQuery-Transactional Databases vs Data Warehouses-Website Demo: Finding PII in your dataset with DLP API-Partner effectively with other data teams-Manage data access and governance-Build production-ready pipelines-Review GCP customer case study-Lab: Analyzing Data with BigQuery Module 2: Building a Data Lake -Introduction to Data Lakes-Data Storage and ETL options on GCP-Building a Data Lake using Cloud Storage-Optional Demo: Optimizing cost with Google Cloud Storage classes and Cloud Functions-Securing Cloud Storage-Storing All Sorts of Data Types-Video Demo: Running federated queries on Parquet and ORC files in BigQuery-Cloud SQL as a relational Data Lake-Lab: Loading Taxi Data into Cloud SQL Module 3: Building a Data Warehouse -The modern data warehouse-Intro to BigQuery-Demo: Query TB+ of data in seconds-Getting Started-Loading Data-Video Demo: Querying Cloud SQL from BigQuery-Lab: Loading Data into BigQuery-Exploring Schemas-Demo: Exploring BigQuery Public Datasets with SQL using INFORMATION_SCHEMA-Schema Design-Nested and Repeated Fields-Demo: Nested and repeated fields in BigQuery-Lab: Working with JSON and Array data in BigQuery-Optimizing with Partitioning and Clustering-Demo: Partitioned and Clustered Tables in BigQuery-Preview: Transforming Batch and Streaming Data Module 4: Introduction to Building Batch Data Pipelines -EL, ELT, ETL-Quality considerations-How to carry out operations in BigQuery-Demo: ELT to improve data quality in BigQuery-Shortcomings-ETL to solve data quality issues Module 5: Executing Spark on Cloud Dataproc -The Hadoop ecosystem-Running Hadoop on Cloud Dataproc-GCS instead of HDFS-Optimizing Dataproc-Lab: Running Apache Spark jobs on Cloud Dataproc Module 6: Serverless Data Processing with Cloud Dataflow -Cloud Dataflow-Why customers value Dataflow-Dataflow Pipelines-Lab: A Simple Dataflow Pipeline (Python/Java)-Lab: MapReduce in Dataflow (Python/Java)-Lab: Side Inputs (Python/Java)-Dataflow Templates-Dataflow SQL Module 7: Manage Data Pipelines with Cloud Data Fusion and Cloud Composer -Building Batch Data Pipelines visually with Cloud Data Fusion-Components-UI Overview-Building a Pipeline-Exploring Data using Wrangler-Lab: Building and executing a pipeline graph in Cloud Data Fusion-Orchestrating work between GCP services with Cloud Composer-Apache Airflow Environment-DAGs and Operators-Workflow Scheduling-Optional Long Demo: Event-triggered Loading of data with Cloud Composer, Cloud Functions, -Cloud Storage, and BigQuery-Monitoring and Logging-Lab: An Introduction to Cloud Composer Module 8: Introduction to Processing Streaming Data Processing Streaming Data Module 9: Serverless Messaging with Cloud Pub/Sub -Cloud Pub/Sub-Lab: Publish Streaming Data into Pub/Sub Module 10: Cloud Dataflow Streaming Features -Cloud Dataflow Streaming Features-Lab: Streaming Data Pipelines Module 11: High-Throughput BigQuery and Bigtable Streaming Features -BigQuery Streaming Features-Lab: Streaming Analytics and Dashboards-Cloud Bigtable-Lab: Streaming Data Pipelines into Bigtable Module 12: Advanced BigQuery Functionality and Performance -Analytic Window Functions-Using With Clauses-GIS Functions-Demo: Mapping Fastest Growing Zip Codes with BigQuery GeoViz-Performance Considerations-Lab: Optimizing your BigQuery Queries for Performance-Optional Lab: Creating Date-Partitioned Tables in BigQuery Module 13: Introduction to Analytics and AI -What is AI?-From Ad-hoc Data Analysis to Data Driven Decisions-Options for ML models on GCP Module 14: Prebuilt ML model APIs for Unstructured Data -Unstructured Data is Hard-ML APIs for Enriching Data-Lab: Using the Natural Language API to Classify Unstructured Text Module 15: Big Data Analytics with Cloud AI Platform Notebooks -What’s a Notebook-BigQuery Magic and Ties to Pandas-Lab: BigQuery in Jupyter Labs on AI Platform Module 16: Production ML Pipelines with Kubeflow -Ways to do ML on GCP-Kubeflow-AI Hub-Lab: Running AI models on Kubeflow Module 17: Custom Model building with SQL in BigQuery ML -BigQuery ML for Quick Model Building-Demo: Train a model with BigQuery ML to predict NYC taxi fares-Supported Models-Lab Option 1: Predict Bike Trip Duration with a Regression Model in BQML-Lab Option 2: Movie Recommendations in BigQuery ML Module 18: Custom Model building with Cloud AutoML -Why Auto ML?-Auto ML Vision-Auto ML NLP-Auto ML Tables [-]
Les mer
2 dager 8 500 kr
Etter fullført kurs skal du beherske mulighetene Final Cut Pro. [+]
• Final Cut grensesnitt & funksjoner oversikt som: Fordeler av “magnetic timeline”, “connected clips & secondary storyline”, lyd og “roles”• Final Cut keyboard shortcuts• Import og organisasjon av videofiler i “library” med “keywords”• Klipp av en videoreportasje med innklippsbilder, intervju, voiceover og logo/ grafikk• Sync av ekstern lyd• Flerkameraklipping med “Multicam”• Fargekorrigering• Lydmiks og lydforbedring• Enkle “Film looks” effekter og justering av effekter• 2D og 3D tekst, legge på navn og tittel, enkel keyframeing & animasjon av logo og grafikk• Eksport Dag 2: Fordypning i FCPX og Motion 5 for å bygge et sett av animasjoner og grafikk for lynrask produksjon av et TV-program / YouTube video-serie • Avanserte video- og grafikk-komposisjoner med flere lag• Triks til å overkomme begrensningene i “magnetic timeline”• Anonymisering av ansikter og nummerskilt• Motion: Tilpassning av FCPX “Transitions” og “Titles” i Motion 5 for å skape egne design på en enkel måte• Motion 5: 2D animasjoner og tekst tracking• Motion 5: Enkle 3D animasjoner og kamera• Motion 5: Keyframes og Behaviors• Motion 5: Vi kombinerer alt vi lærer om Motion 5 og skaper grafiske elementer for et TV-program / YouTube video-serie som logo-intro-animasjon, lower-third, custom transitions/logo stinger.• Motion 5: Publisering til FCPX for lynrask produksjon i framtiden [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
07 Apr
05 May
16 Jun
Dette er kurset for deg som ikke er vant med Excel, men gjerne vil lære, deg som jobber med Excel regneark andre har laget, men ikke helt har oversikten over hva Excel ka... [+]
Kursinnhold Gjennomgang av Excel vinduet Enkle formler Enkel formatering Klipp og lim Kopiering av formler Merking Slette data Fjerne og legge til celler, rader og kolonner Angre Flytting og kopiering Søk og erstatt Autofyll Cellereferanser Låse og gi navn til celler Hva er en funksjon? Funksjonsveiviseren Gjennomgang av de mest brukte funksjonene: Summer, antall, størst, min og gjennomsnitt. Målgruppe Deg som Har begynt i en stilling hvor en er forventet å kunne Excel Er nysgjerrig på hva Excel kan gjøre for deg i din jobb Er nybegynner eller litt øvet Sliter med å skjønne hvordan du kan jobbe mest effektivt i Excel Forkunnskaper Excel: Ingen Øvrig: Er kjent med bruk av PC Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Oslo 5 dager 46 500 kr
31 Mar
31 Mar
16 Jun
ENCOR: Implementing and Operating Cisco Enterprise Network Core Technologies [+]
ENCOR: Implementing and Operating Cisco Enterprise Network Core Technologies [-]
Les mer
Oslo Bergen 2 dager 8 900 kr
31 Mar
07 May
07 May
Excel Grunnkurs [+]
Excel Grunnkurs [-]
Les mer
Oslo Trondheim Og 1 annet sted 3 dager 27 900 kr
28 Apr
28 Apr
21 May
Architecting on AWS [+]
Architecting on AWS [-]
Les mer